首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

2.
The EPR spectra of thermally treated BaF2: Mn samples is reported. After thermal annealing at 900 K a trigonal Mn2+ center with g=2.000±0.005, |D|=2725±40MHz, |A|=265±10MHz, DA>0, is observed. Annealing at 1200 K produces an orthorhombic Mn2+ center with g=2.00±0.01, |D|=2430±40MHz, |E|=570±20MHz, |A|=265±10MHz, DA<0. The superhyperfine (SHF) structures due to interactions with the neighbouring fluorines indicates that the trigonal manganese interacts with four fluorines, three of them equivalent. The orthorhombic Mn2+ shows interaction with four equivalent fluorine nuclei.  相似文献   

3.
The heat capacity of the layer compound, tetrachlorobis (methylammonium) manganese II, (CH3NH3)2MnCl4, has been measured over the range 10K <T<300K. In this region, two structural phase transitions have been observed previously by other techniques: one transition is from a monoclinic low temperature (MLT) phase to a tetragonal low temperature (TLT) phase, and the other is from TLT to an orthorhombic room temperature (ORT) phase. The present experiments have shown that the lower transition (MLT→TLT) occurs at T = 94.37±0.05K with ΔHt = 727±5 J mol?1 and ΔSt = 7.76±0.05 J K?1 mol?1, and the upper transition (TLT→ORT) takes place at T = 257.02±0.07K with ΔHt = 116±1J mol?1 and ΔSt = 0.451±0.004 J K?1mol?1. These results are discussed in the light of recent measurements on (CH3NH3)2CdCl4, and also with regard to a recent theoretical model of the structural phase transitions in compounds of this type.In addition to the structural phase transitions, (CH3NH3)2MnCl4 also undergoes magnetic ordering at T < 150K. The magnetic component to the heat capacity, as deduced from a corresponding states comparison of the heat capacity of the present compound with that of the Cd compound, is shown to be consistent with the behaviour expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

4.
Heat capacities of [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] were measured between 135 and 375 K. A heat capacity anomaly due to the spin-transition from low-spin 1A1 to high-spin π2 electronic ground state was found at 176·29 K for the SCN-compound and at 231·26 K for the SeCN-compound, respectively. Enthalpy and entropy of transition were determined to be ΔH = 8·60 ± 0·14 kJ mol?1 and ΔS = 48·78 ± 0·71 J K?1 mol?1 for the SCN-compound and ΔH = 11·60 ± 0·44 kJ mol?1 and ΔS = 51·22 ± 2·33 J K?1 mol?1 for the SeCN-compound. To account for much larger value of ΔS compared with the magnetic contribution, we suggest that there is significant coupling between electronic state and phonon system. We also present a phenomenological theory based on heterophase fluctuation. Gross aspects of magnetic, spectroscopic, and thermal behaviors were satisfactorily accounted for by this model. To examine closely the transition process, infrared spectra were recorded as a function of temperature in the range 4000 ? 30 cm?1. The spectra revealed clearly the coexistence of the 1A1, and the 5T2 ground states around Tc.  相似文献   

5.
The momenta of ~30 000 charged particles from K+ decays were measured using a magnetic spectrometer with streamer chambers. The ratio R = Γ(Kπ2+)/Γ(Kμ2+) = 0.3355 ± 0.0057 was obtained. Our values for the branching ratios are: (63.18±0.43)% for Kμ2+, (21.18±0.33)% for Kπ2+, (3.33±0.51)% for Kμ3+, (4.99±0.54)% for Ke3+.  相似文献   

6.
Electron spin resonance has been observed for Fe3+ and Mn2+ ions occupying sites with trigonal symmetry in undoped and doped Verneuil-grown crystals of the ilmenite type compound MgTiO3. At 300 K, the fine structure parameters in the spin Hamiltonian are (in 10?4cm?1) D = +844 (± 1), (a? F) = +118 (± 1), a = 69 (± 7) for Fe3+ and D = +164 (± 1), (a ? F) = +10.2 (± l), a = 7.0 (± 1) for Mn2+. These values are compared with literature data for Fe3+ and Mn2+ in other oxides, especially Al2o3, with particular reference to the recent “superposition” theory of the effect of a trigonal distortion. From the orientation of the axes of cubic pseudosymmetry of the spin Hamiltonian, and with the assumption that a has the same sign for both ions, it is proposed that Fe3+ and Mn2+ occupy the same octahedral site, namely the Mg2+ site. Anomalous line splittings observed for one sample were attributed to twinning on (0001) or {1120} planes.  相似文献   

7.
Diode laser measurements of the ν10 + ν11 (ltot = ±2) perpendicular band of cyclopropane have led to the assignments of roughly 600 lines in the 1880–1920-cm?1 region. Most of the spectra were recorded and stored in digital form using a rapid-scan mode of operating the laser. These spectra were calibrated, with the aid of a computer, by reference to the R lines of the ν1 + ν2 band of N2O. The ground state constants we obtained are (in cm?1) B = 0.670240 ± 2.4 × 10?5, DJ = (1.090 ± 0.054) × 10?6, DJK = (?1.29 ± 0.19) × 10?6, DK = (0.2 ± 1.1) × 10?6. The excited state levels are perturbed at large J values, presumably by Coriolis couplings between the active E′(ltot = ±2) and the inactive A′(ltot = 0) states. Effective values for the excited state constants were obtained by considering only the J < 15 levels. The A1-A2 splittings in the K′ = 1 excited states were observed to vary as qeffJ(J + 1), with qeff = (2.17 ± 0.17) × 10?4 cm?1.  相似文献   

8.
The gas-phase ir spectra of monoisotopic H3Si35Cl [35] and H3Si37Cl [37] in the 2ν6 region near 1300 cm?1 have been studied with a resolution of 0.05 cm?1. A total of 467 and 1206 lines have been assigned for [35] and [37], respectively, and analyzed by a least-squares procedure, σ(J, K) ~ 6 × 10?3cm?1, to yield three parameters for the 2ν60 and six for the 2ν6±2 states for both isotopomers. In the ν6 region 3247 and 127150 lines have been assigned to the hot bands 2ν60 ? ν6±1 and 2ν6±2 ? ν6±1 of [35] and [37], respectively. While a hot band 2νt0 ? νt±1 does not provide any information above that available from νt±1 and 2νt0, a hot band 2νt±2 ? νt±1 may supply extra data concerning the ground state. A new method for the evaluation of A0 and DK0 from combination differences of νt±1, 2νt±2, and 2νt±2 ? νt±1 of a symmetric top with C3v symmetry is presented. Application to [35] and [37] yielded A0 of 2.8447(5) and 2.8437(3) cm?1, and DK0 of 2.12(20) and 2.38(9) × 10?5 cm?1, respectively.  相似文献   

9.
The electron paramagnetic resonance spectrum of Gd3+ in YCl3·6H20 with 1100 dilution of Gd/Y ions, has been studied with an X-band spectrometer at 295, 77 and 1.77°K and with a K-band spectrometer at 295 and 77°K. The individual values of all the parameters are evaluated from the data at the three temperatures. In particular, the following values for the g-tensor and the zero-field splitting parameters b20 and b22 are obtained from X-band data: at 295°K, gzz = 1.994±0.005, gxx = 1.992±0.005, gyy = 1.997±0.005, b20 = 1.898 ±0.015 GHz, b22 = ?2.247 ± 0.015GHz; at 77°K, gzz = 1.999±0.008, gxx = 2.000±0.008, b20= 1.978 ±0.022 GHz, b22 = ?1.574±0.022GHz; at 1.77°K, gzz = 2.002±0.010, gxx = 1.990 ±0.010, b20 = 2.011 ± 0.025 GHz, b22 = ?1.650 ±0.025 GHz. (The K-band values are found to be consistent with the X-band values). From the angular dependence of the data in the ZX plane (i) the angle X0 which the Z axis makes with the a vector of the unit cell, is determined to be 58.00 ±0.25° and (ii) the existence of pseudo-symmetry axes at ±5° from the Z axis in the ZX plane as found by heat capacity and specific heat data has been confirmed. An estimate is also made of the extent of admixture of the excited 6P72 state with the ground state 8S72.  相似文献   

10.
The infrared absorption of arsine, AsH3, between 750 and 1200 cm?1 has been recorded at a resolution of 0.006 cm?1. Altogether 2419 transitions, including nearly 700 “perturbation allowed” transitions with Δ∥k ? l∥ = ±3, ±6, and ±9, have been assigned to the ν2(A1) and ν4(E) bands. Splitting of the transitions for K″ = 3, 6, and 9 was also observed. To fit the rotational pattern of the v2 = 1 and v4 = 1 vibrational states up to J = 21, all the experimental data were analyzed simultaneously on the basis of a rovibrational Hamiltonian which took into account the Coriolis interaction between ν2 and ν4 and also included several essential resonances within them. The derived set of 38 significant spectroscopic parameters reproduced the 2328 transition wavenumbers retained in the final fit within the accuracy of the experimental measurements.  相似文献   

11.
The one-magnon Raman spectrum of CoBr2 has been investigated as a function of temperature, and peak frequency, integrated intensity and width parameters obtained. The results obtained for the band energy at low temperature (22.2 ± 0.2 cm-1 at 5.7.K) are in good agreement with AFMR and neutron scattering results. The one-magnon energy renormalises relatively slowly with increasing temperature and is about 15 cm-1 at TN = 19 K, whereas the integrated intensity approaches zero like the magnetization at TN and the width diverges. A low intensity band at 26.8 ± 1 cm-1 (7.6K) may be due to two-magnon scattering from spin waves along the c-axis.  相似文献   

12.
Values of γ=0.33±0.01 mJ/K2·g atom and θD=176±1 K were found for LaPd3. PrPd3 shows magnetic ordering below 0.6 K and a Schottky anomaly whose maximum lies around 1.8 K. The crystalline field at the Pr3+ site creates a Γ3 (doublet) excited state lying 4 K above the Γ5 (triplet) ground state.  相似文献   

13.
Optical observation under the polarizing microscope and DSC measurements on K3H(SeO4)2 single crystal have been carried out in the temperature range 25-200 °C. It reveals a high-temperature structural phase transition at around 110 °C. The crystal system transformed from monoclinic to trigonal. Electrical impedance measurements of K3H(SeO4)2 were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The temperature dependence of electrical conductivity indicates that the sample crystal became a fast ionic conductor in the high-temperature phase. The frequency dependence of conductivity follows the Jonscher's universal dynamic law with the relation σ(ω)=σ(0)+n, where ω is the frequency of the AC field, and n is the exponent. The obtained n values decrease from 1.2 to 0.1 from the room temperature phase to fast ionic phase. The high ionic conductivity in the high-temperature phase is explained by the dynamical disordering of protons between the neighboring SeO4 groups, which provide more vacant sites in the crystal.  相似文献   

14.
Absolute intensities of the vibration-rotation lines of the CO2 401II←000 band 7734 cm-1 are measured under high-resolution, low-pressure conditions by use of a White-type 25-m base-path, absorption cell together with a 5-m Czerny-Turner spectrometer. The total band intensity SB, the purely vibrational transition moment
, and the vibration-rotation interaction constant ζ are calculated from the intensity measurements. The values obtained for these parameters are SB(401II) = (7.06±0.07) × 10-5 cm-2 atm-1293°K,
= (3.08±0.03)×10-5 debye, and ζ = (2.5±0.5)×10-4. The intensity of the associated “hot band” 411II←010 is also determined and found to be SB(411II←010) = (0.53±0.02)×10-5 cm-2 atm-1293°K.  相似文献   

15.
X-irradiation at 80°K leads to the formation of VK centres and, in addition, perturbed F centres in the case of BaCl2:K+. The VK centres spectra exhibit a superhyperfine structure. A warming to 130°K of crystals X-irradiated at 80°K causes the VK centres to be perturbed, and besides leads to the formation of (AgCl4)2? complexes in BaCl2:Ag+.  相似文献   

16.
We remark that, using the Cabibbo transformation properties for the weak Hamiltonian we can obtain Δ0 = δ0(0) (s = MK(2) (s = MK2) from the experimental decay rates for Ks → 2π, K+π0π+, obtaining δ0 = 58.0° ± 4.6°. This result implies in particular a value of ≈ 0.6 for the S-wave isospin zero scattering length, in accordance with Ke4 results but in violent disagreement with Weinberg's calculation.  相似文献   

17.
Electron spin resonance has been observed in high purity single crystals of K2Pt(CN)4Br0.3·3.2H2O, (KCP), in the temperature range of 4.22–80 K. Two types of paramagnetic species are found to dominate the spectrum. One of these is an inhomogeneously broadened line showing no resolved hyperfine splitting and having g = 1.946 ± 0.003 and g⊥ = 2.340 ± 0.003. The second paramagnet is identified as a Cu2+ impurity center with g = 2.231 ± 0.003, g⊥ = 2.079 ± 0.002 and hyperfine tensor A = 467 MHz, A = 70 MHz.  相似文献   

18.
The X-band EPR spectrum of SrCl2:V has been measured at liquid nitrogen temperature. A signal associated with V2+ in a site of trigonal symmetry is observed. The EPR data have been explained using the spin hamiltonian = μβHg?S + D[S2z ? 13S(SH)] + SA?I, with D ? hv, g = 1.957 ± 0.004, g6 = 1.954 ± 0.004, A = 230 ± 5 MHz, A6 = 235 ± 5 MHz. This V2+ defect is similar to those previously reported in fluoride crystals with the fluorite structure.  相似文献   

19.
(Dimethyldiphenylphosphonium)+(7,7,8,8-tetracyanoquinodimethanide)?2 is monoclinic, space group Cc, with a = 32.01(2), b = 6.56(1), c = 15.72(2)A?, β = 107.4(8)°. The TCNQ's stack plane-to-plane in columns parallel to b with (i) a mean interplanar spacing of 3.28 Å along the conducting chains and (ii) an exocyclic bond to quinonoid ring overlap of adjacent molecules. The conductivity along b, the needle axis, varies as σ = σ0exp (?EakT) where σ300 K = 0.05 S cm?1 and Ea = 0.20 eV (Diethyldiphenylphosphonium)+(7,7,8,8-tetracyanoquinodimethanide)?2 is similarly monoclinic, space group Cc, with a = 31.48(2), b = 6.51(1), c = 15.48(2) A?, β = 104.2(8)°. The conductivity at 300 K and activation energy, both determined along b, are 1–10 S cm?1 and 0.05 eV respectively. There is evidence of a lattice distortion in the dimethyl analogue only.  相似文献   

20.
In a study of charged KL0 three-body decays a sample of 6668 KL0π±e?ν candidates has been obtained. The Dalitz plot distribution is in agreement with V ? A theory, and limits are presented for scalar and tensot contributions to the weak current. Using a conventional expansion for the form factor f+ we find λ+ = 0.055 ± 0.010 with systematic effects estimated at ± 0.01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号