首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The linear optical (LO) and nonlinear optical (NLO) properties of a series of isocyanurates functionalized by donor arms at the periphery are reported herein. These octupolar derivatives were obtained in a straightforward way from commercial isocyanate derivatives and were fully characterized. Although several of these compounds are known, those that exhibited the largest NLO activities are all new compounds. In terms of second‐order activity, several of these derivatives exhibit remarkable activity/transparency tradeoffs. In terms of third‐order activity, the longer derivatives with the stronger donor groups (X=NH2, NMe2, or NPh2) were shown to possess significant two‐photon absorption cross sections. These strongly luminescent derivatives exhibit two‐photon absorption cross sections up to 410 GM. DFT computations were also conducted to unravel their electronic structures and to rationalize their NLO properties. To our knowledge, the present study is the first concerned with the nonlinear optical properties of these original cyclotrimers.  相似文献   

2.
Porphyrins are important macrocycles with applications in several areas including therapy, catalysis, and sensing. Strong nonlinear optical (NLO) responses are the key to fully exploiting the potential of these biocompatible molecules. We herein report that certain metal-alkynyl donor/nitro acceptor-functionalized porphyrins are attractive candidates for NLO applications. We show that specific examples exhibit record quadratic optical nonlinearity, exceptional two-photon absorption, and outstanding three-photon absorption, and we report the first porphyrins that exhibit four-photon absorption. The two-, three-, and four-photon absorption maxima are found at the corresponding multiples of linear absorption bands that time-dependent density functional theory assigns as admixtures of porphyrin-localized π*←π and donor-porphyrin to porphyrin-acceptor charge-transfer transitions.  相似文献   

3.
A series of new star-shaped monodisperse conjugated truxene derivatives bearing oligo(fluorene-vinylene) arms (Tr-OFVn, n = 1, 2, 3, 4) have been synthesized. It is found that the conjugation of the oligomers can be extended with prolonging the arms. Notably, the branched oligomers Tr-OFVn without strong donor and acceptor units exhibit two-photon absorption properties, and the two-photon absorption cross sections (δ(max)) increase with increasing the number of fluorene-vinylene units in the arms. The maximum value of δ(max) reaches 8073 GM for compound Tr-OFV4, which made it one of the most competitive compounds with enhanced TPA cross section. It provides a new platform for exploiting strong TPA compounds, in which the extended π-conjugated systems are involved in the absence of strong donor and acceptor units.  相似文献   

4.
以邻菲罗啉双酮和N,N-二(4-丁氧基苯基)氨基苯甲醛为原料,设计合成了光功能配体(L)及其钌配合物1,运用现代分析测试手段进行了表征。 利用开/闭孔Z扫描技术测试了目标化合物的三阶非线性光学性质。 结果表明,在近红外范围内钌配合物具有比配体更大的三阶非线性系数和双光子吸收截面。 通过UV-Vis吸收光谱、荧光光谱、圆二色光谱和粘度实验,研究了配合物与小牛胸腺DNA结合特性。 结果表明,配合物通过插入模式与DNA结合。 因此,该新型钌配合物可以作为非线性光学材料应用于生物显影。  相似文献   

5.
This paper evaluates the use of diaroyl(methanato)boron difluoride compounds for designing efficient fluorescent probes through two-photon absorption. Three different pathways allowing for the syntheses of symmetrical and dissymmetrical molecules are reported. The stable diaroyl(methanato)boron difluoride derivatives can be easily obtained in good yields. They exhibit a large one-photon absorption that is easily tuned in the near-UV range. Their strong fluorescence emission covers the whole visible domain. In addition to these attractive linear properties, several diaroyl(methanato)boron difluoride derivatives possess significant cross sections for two-photon absorption. The derived structure-property relationships are promising for designing new generations of molecules relying on the diaroyl(methanato)boron difluoride backbone.  相似文献   

6.
The nonlinear optical properties of four isomeric dipolar two-photon chromophores are compared. The chromophores consist of a carbazole electron donor coupled to a naphthalimide electron acceptor by a phenylacetylene bridge. By variation of the connectivity of the bridge at the phenyl groups, four compounds with 0, 1, and 2 meta linkages are synthesized. The linear and nonlinear optical properties of these compounds are measured. Despite similar linear absorption cross sections, the two-photon absorption cross section delta of the all-meta compound is almost a factor of 10 lower than the all-para compound. By taking the detailed molecular conformations into account in order to calculate accurate dipole moment changes, we find that the decrease in delta results largely from the decreased charge transfer ability with increasing number of meta linkages. We find that a two-state model can be used to predict semiquantitatively the observed trend in delta on the basis of the linear optical properties of the molecules. This work illustrates the dramatic effect the ground-state polarizability can have on the nonlinear optical response of organic compounds and also provides a way to quantify the ability of meta linkages to inhibit charge transfer in their ground-state configuration.  相似文献   

7.
A versatile synthetic strategy to access a set of highly fluorescent pi-conjugated triphenylamines bearing a functional linker at various positions on one phenyl ring is described. These compounds were designed for large two-photon absorption (2PA) and in particular for labeling of biomolecules. The monoderivatized trisformylated or trisiodinated intermediates described herein allow introduction of a large variety of electron-withdrawing groups required for large 2PA as well as a panel of chemical functions suitable for coupling to biomolecules. The monoderivatized three-branched compounds and in particular the benzothiazole (TP-3Bz) series show remarkable linear (high extinction coefficients and high quantum yield) and nonlinear (high 2-photon cross sections) optical properties. Interestingly the presence of functional side chains does not disturb the two-photon absorption. Finally, monoderivatized two-branched derivatives also appear to be valuable candidates. Altogether the good optical properties of the new derivatizable pi-conjugated TPA combined with their small size and their compatibility with bioconjugation protocols suggest that they represent a new chemical class of labels potentially applicable for the tracking of biomolecules using two-photon scanning microscopy.  相似文献   

8.
The second-order nonlinear optical (NLO) properties of a series of benzothiazole derivatives were studied by use of the ZINDO-SOS method.These chromophores are formed by a donor- π- bridge-acceptor system,based on a nitro group connected with benzothiazole as the acceptor and a hydroxyl-functional amino group as the donor.For the purpose of comparison,we also designed molecules in which nitrobenzene is an acceptor,The calculation results indicate that benzothiazole derivatives exhibit larger second-odrder polarizabilities than nitrobenzene derivatives.In order to clarify the origin of the NLO response of these chromophores,their electron properties were investigated as well.The benzothiazole derivatives are good candidates for application in electro-optical device due to their high optical nonlinearities,good thermal and photonic stability.  相似文献   

9.
Porphycenes are structural isomers of porphyrins that have many unique properties and features. In the present work, the resonant two-photon absorption of 2,7,12,17-tetraphenylporphycene (TPPo) and its palladium(II) complex (PdTPPo) has been investigated. The data obtained are compared to those from the isomeric compound, meso-tetraphenylporphyrin (TPP). Detection of phosphorescence from singlet molecular oxygen, O2(a(1)Delta(g)), produced upon irradiation of these compounds, was used to obtain two-photon excitation spectra and to quantify two-photon absorption cross sections, delta. In the spectral region of 750-850 nm, the two-photon absorption cross sections at the band maxima for both TPPo and PdTPPo, delta = 2280 and 1750 GM, respectively, are significantly larger than that for TPP. This difference is attributed to the phenomenon of so-called resonance enhancement; for the porphycenes, the two-photon transition is nearly resonant with a comparatively intense one-photon Q-band transition. The results of quantum mechanical calculations using density functional quadratic response theory are in excellent agreement with the experimental data and, as such, demonstrate that comparatively high-level quantum chemical methods can be used to interpret and predict nonlinear optical properties from such large molecular systems. One important point realized through these experiments and calculations is that one must exercise caution when using qualitative molecular-symmetry-derived arguments to predict the expected spectral relationship between allowed one- and two-photon transitions. From a practical perspective, this study establishes that, in comparison to porphyrins and other tetrapyrrolic macrocyclic systems, porphycenes exhibit many desirable attributes for use as sensitizers in two-photon initiated photodynamic therapy.  相似文献   

10.
Very large two-photon absorption (TPA) cross sections at the infrared region have been revealed for J-aggregates of asymmetric zinc porphyrin using quantum-chemical calculation. The TPA properties are evaluated for monomer and aggregates of a series of push-pull porphyrins, whose syntheses are known in the literature. The two-photon absorption cross section can be greatly enhanced by increasing the strengths of the electron donor/acceptor. We also present a quantum-chemical analysis on porphyrin aggregates to understand the role of intermolecular interactions and the relationship between structural and collective nonlinear optical properties. It has been observed that the TPA properties change tremendously as monomers undergo J-aggregation and the magnitudes of TPA cross sections are highly dependent on the nature of aggregates. The importance of our results with respect to the design of photonic and photodynamic therapy materials has been discussed.  相似文献   

11.
Four 1,8‐naphthalimide hydrazone molecules with different electron‐donating groups have been applied in the study of linear and nonlinear optical (NLO) properties. These compounds showed strong green emission in solution. Their NLO properties such as two‐photon absorption (TPA) behavior with femtosecond laser pulses ca. 800 nm and excited‐state absorption (ESA) behavior with nanosecond laser pulses at 532 nm were investigated. Compound 4 presented the largest two‐photon cross section (550 GM) among them due to two factors: the conjugated length of compound 4 is the longest and the electron‐donating ability of compound 4 is the strongest. Different from TPA behavior, compound 2 showed the best nonlinear absorption properties at 532 nm and its nonlinear absorption coefficient and third‐order nonlinear optical susceptibilities χ (3) were up to 1.41×10?10 MKS and 4.65×10?12 esu, respectively. Through the modification of the structure, the nonlinear optical properties of these compounds at different wavelengths (532 and 800 nm) were well tuned. The great broad‐band nonlinear optical properties indicate hydrazones are good candidates for organic nonlinear optical absorption materials.  相似文献   

12.
通过多步反应制备了三个新型的双光子吸收化合物,测试了它们的光物理性质,发现该系列化合物具有较大的双光子吸收截面,并且随温度降低其双光子吸收截面增大.尤其是化合物TMVDB,其量子效率为0.83,常温时的双光子吸收截面达到1164GM,其双光子吸收截面除以分子量为2.08,表现出了优良的双光子吸收发光性能.进一步将TMVDB掺杂到固体材料中,得到强双光子诱导发光的固体材料.  相似文献   

13.
A series of three-coordinate octupolar compounds with varied centers (boron, aluminum, and nitrogen), which exhibit very large effective two-photon absorption cross sections have been theoretically studied. The ground state geometries and electronic structures are obtained using the density functional theory with the B3LYP functional and 6-31G(d) basis set, and the results are comparable to the available experimental determinations. Based on the correct geometrical and electronic structures, the one- and two-photon absorptions are predicted by the ZINDO-SOS method. Among these compounds, the boron (B) and aluminum (Al) centers act as acceptors, while the nitrogen center acts as donor according to the net charge changes during the excitation. It is found that (i) the compounds with boron and aluminum centers show two large two-photon absorption peaks, while the molecule with nitrogen center show only one two-photon absorption peak; (ii) the cross sections of the molecules with B or Al as centers are larger than that of the molecule with nitrogen as center; furthermore, the two-photon absorption cross section of the molecule with Al center is larger than that of the molecule with B center, from this point of view, our theoretical prediction provides for the experiment a good new candidate with large two-photon absorption cross section for further research; (iii) lengthening the conjugation bridge by inserting a benzene ring on the organoborane compounds (forming the investigated molecule B-2) enhances the two-photon absorption cross section, and keeping good transparency at the same time.  相似文献   

14.
We present a quantum-chemical analysis of the two-photon absorption properties and first hyperpolarizabilities of a series of ionic octupolar molecules and a comparison of their characteristics with corresponding neutral molecules. The molecular geometries are obtained via BL3YP/6-31G (d,p) level optimization including the SCRF/PCM approach, while the dynamic NLO and two-photon absorption properties are calculated with the ZINDO/CV method including solvent effects. The effects of donor or acceptor substitution and elongation of the conjugation path length are established to demonstrate the engineering guidelines for enhancing two-photon absorption cross section and molecular optical nonlinearities. It is found that the chain length dependence of the two-photon absorption and the first nonlinearity follow the same trend, displaying a saturation limit at n = 5. The solvent induced effect on the two-photon absorption and NLO properties are studied using the ZINDO/CV/SCRF method. It has been observed that two-photon absorption and the first nonlinearity peaks at epsilon approximately = 20 and then decreases slightly, approaching saturation. We also compare our theoretical findings with the experimental results wherever available in the literature.  相似文献   

15.
以4'-(4-甲苯基)-2,2'∶6',2″-三联吡啶为电子受体(A)基元, 通过Wittig反应引入电子给体(D)基元, 合成了2个新的D-π-A型三联吡啶衍生物; 研究了其单、 双光子吸收荧光特性, 并通过量子化学计算从结构角度进行了解释. 目标产物的荧光量子产率(Ф)最高达到0.45, 双光子吸收截面(δ2)最大达406 GM.  相似文献   

16.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

17.
We report the synthesis, one- and two-photon absorption spectroscopy, fluorescence, and electrochemical properties of a series of quadrupolar molecules that feature proquinoidal π-aromatic acceptors. These quadrupolar molecules possess either donor-acceptor-donor (D-A-D) or acceptor-donor-acceptor (A-D-A) electronic motifs, and feature 4-N,N-dihexylaminophenyl, 4-dodecyloxyphenyl, 4-(N,N-dihexylamino)benzo[c][1,2,5]thiadiazolyl or 2,5-dioctyloxyphenyl electron donor moieties and benzo[c][1,2,5]thiadiazole (BTD) or 6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (TDQ) electron acceptor units. These conjugated structures are highly emissive in nonpolar solvents and exhibit large spectral red-shifts of their respective lowest energy absorption bands relative to analogous reference compounds that incorporate phenylene components in place of BTD and TDQ moieties. BTD-based D-A-D and A-D-A chromophores exhibit increasing fluorescence emission red-shifts, and a concomitant decrease of the fluorescence quantum yield (Φ(f)) with increasing solvent polarity; these data indicate that electronic excitation augments benzothiadiazole electron density via an internal charge transfer mechanism. The BTD- and TDQ-containing structures exhibit blue-shifted two-photon absorption (TPA) spectra relative to their corresponding one-photon absorption (OPA) spectra, and display high TPA cross sections (>100 GM) within these spectral windows. D-A-D and A-D-A structures that feature more extensive conjugation within this series of compounds exhibit larger TPA cross sections consistent with computational simulation. Factors governing TPA properties of these quadrupolar chromophores are discussed within the context of a three-state model.  相似文献   

18.
Three quadrupolar oligophenylenevinylenes with five rings in the conjugated backbone, terminal donor groups, and various acceptors and/or donors along the backbone were synthesized and their two-photon spectroscopic properties investigated. These chromophores exhibit large two-photon absorption cross sections over a wide wavelength range and two distinct peaks, the strongest of which (deltamax > 3600 GM) is observed at 960-970 nm, a wavelength close to twice the value of the linear absorption maximum (2lambda(1)max). The findings on these chromophores are compared with those for analogous molecules with shorter conjugation length, for which the main two-photon band is at significantly shorter wavelength than 2lambda(1)max.  相似文献   

19.
A comprehensive analysis of the well-known open aperture Z-scan method, using a modified equation for the change in transmittance, is presented and accounts for discrepancies in two-photon absorption (2PA) cross sections between picosecond and femtosecond excitation. This new approach takes into account excited-state absorption and stimulated emission of the molecules studied. The two-photon absorption cross-section spectra of a series of six fluorene-based derivatives, determined using picosecond pulses, over a broad spectral range (500-900 nm), and this approach using a modified fitting procedure in the open aperture Z-scan is reported. We demonstrate that the fluorene derivatives exhibit two-photon absorption cross-section values between 700 and 5000 GM, when excited into the two-photon allowed electronic state. Excitation anisotropy spectra, measured to investigate the nature of the observed linear and nonlinear absorption bands, are presented and provide insight into the 2PA process.  相似文献   

20.
A series of novel compounds with dibenzothiophene core branched structures have been synthesized, and their two-photon absorption (TPA) properties were investigated. Two-photon fluorescence (TPF) and z-scan techniques were carried out, and a significant enhancement in the TPA cross section was observed for ST-G2, which possesses the largest generation number among the studied samples. By using different solvents, the largest nonlinear optical (NLO) response was observed in the most polar solvent. Ultrafast pump-probe experiments were performed to probe the excited state dynamics in the branched molecules, and the obtained results further confirmed the TPA enhancement mechanism. Time-resolved fluorescence (TRFL) and TRFL anisotropy measurements reveal that there is an ultrafast charge localization to the intramolecular charge transfer (ICT) state followed by relaxation with a lifetime longer than 1 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号