首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce new invariant sets, and the invariant sets and exact solutions to general reactiondiffusion equation are discussed. It is shown that there exist a class of exact solutions to the equations that belong to the invariant sets.  相似文献   

2.
In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.  相似文献   

3.
In this paper, we introduce a new invariant set ˜E0={u:ux=fˊ(x)F(u)+ε [gˊ(x) -fˊ(x)g(x)]F(u)exp(-∫u(1/F(z))dz), where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact solutions to nonlinear diffusion equation ut=(D(u)ux)x+Q(x,u)ux+P(x,u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set ˜E0.  相似文献   

4.
Based on a first-order nonlinear ordinary differential equation with six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

5.
New Exact Travelling Wave Solutions to Kundu Equation   总被引:1,自引:0,他引:1  
Based on a first-order nonlinear ordinary differential equation with Six-degree nonlinear term, we first present a new auxiliary equation expansion method and its algorithm. Being concise and straightforward, the method is applied to the Kundu equation. As a result, some new exact travelling wave solutions are obtained, which include bright and dark solitary wave solutions, triangular periodic wave solutions, and singular solutions. This algorithm can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

6.
7.
Based on a known transform, the exact solutions of (2 1)-dimensional Broer-Kaup equations are inves tigated by using the method of direct integral. A kind of new exact solutions of Broer-Kaup equations are obtained, which contain previous results about solitary wave solutions.  相似文献   

8.
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.  相似文献   

9.
New Exact Solutions to Long-Short Wave Interaction Equations   总被引:1,自引:0,他引:1  
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.  相似文献   

10.
Based on a known transform, the exact solutions of (2 1)-dimensional Broer-Kaup equations are investigated by using the method of direct integral. A kind of new exact solutions of Broer Kaup equations are obtained,which contain previous results about solitary wave solutions.  相似文献   

11.
This paper is concerned with the (2+1)-dimensional Benney types of equations. By the complete Lie group classification method, all of the point symmetries of the Benney types of equations are obtained, and the integrable condition of the equation is given. Then, the symmetry reductions and exact solutions to the (2+1)-dimensional nonlinear wave equations are presented. Especially, the shock wave solutions of the Benney equations are investigated by the symmetry reduction and trial function method.  相似文献   

12.
In this paper, the Lie group classification method is performed on the fractional partial differential equation (FPDE), all of the point symmetries of the FPDEs are obtained. Then, the symmetry reductions and exact solutions to the fractional equations are presented, the compatibility of the symmetry analysis for the fractional and integer-order cases is verified. Especially, we reduce the FPDEs to the fractional ordinary differential equations (FODEs) in terms of the Erdélyi-Kober (E-K) fractional operator method, and extend the power series method for investigating exact solutions to the FPDEs.  相似文献   

13.
Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to sinh-Gordon equation is obtained, and qualitative properties of solutions are discussed. In particular, we point out that some qualitative properties derived intuitively from dynamic system method are not true. Finally, we prove that our solutions to sinh-Gordon equation include all solutions obtained in the paper [Z.T. Fu, et al., Commun. Theor. Phys. (Beijing, China) 45 (2006) 55]. Through an example, we show how to give some new identities on Jacobian elliptic functions.  相似文献   

14.
With the aid of symbolic computation system Mathematica, several explicit solutions for Fisher's equation and CKdV equation are constructed by utilizing an auxiliary equation method, the so called G′/G-expansion method, where the new and more general forms of solutions are also constructed. When the parameters are taken as special values, the previously known solutions are recovered.  相似文献   

15.
Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelope solutions, and Jacobian elliptic function envelope solutions, are obtained. To our knowledge, all of these results are new. In particular, our proposed method is very simple and can be applied to a lot of similar equations.  相似文献   

16.
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.  相似文献   

17.
By a known transformation, (2 1)-dimensional Brioer-Kaup equations are turned to a single equation.The classical Lie symmetry analysis and similarity reductions axe performed for this single equation. From some of reduction equations, new exact solutions are obtained, which contain previous results, and more exact solutions can be created directly by abundant known solutions of the Burgers equations and the heat equations.  相似文献   

18.
The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.  相似文献   

19.
The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

20.
Elliptic Equation and New Solutions to Nonlinear Wave Equations   总被引:2,自引:0,他引:2  
The new solutions to elliptic equation are shown, and then the elliptic: equation is taken as a transformation and is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodic solutions of rational form, solitary wave solutions of rational form, and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号