首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments of sessile water droplet evaporation on both polydimethylsiloxane (PDMS) and Teflon surfaces were conducted. All experiments begin with constant contact area mode (the initial contact angle is greater than 90°), switch to constant contact angle mode and end with mixed mode. Based on the assumptions of spherical droplet and uniform concentration gradient, theoretical analyses for both constant contact area and constant contact angle modes are made and theoretical solutions are derived accordingly, especially a theoretical solution of contact angle is presented first for CCR stage with any value of the initial contact angle. Moreover, comparisons between the theoretical solutions and experimental data of contact angle in CCR stage demonstrate the validity of the theoretical solution and it would help for a better understanding and application of water droplet on solid surfaces, which is quite often encountered in lab-on-a-chip, polymerase chain reaction (PCR) and other micro-fluidics devices.  相似文献   

2.
Surface amine gradients that exhibit a wide variety of profiles, including those that incorporate spatially distinct regions having steep and gradual variations in chemical functionality, have been prepared by the sol-gel process using a controlled-rate infusion method. In this work, a substrate that incorporates dimethyl and Si-OH groups is temporally modified with an aminoalkoxysilane (NH(2)(CH(2))(3)Si(OC(2)H(5))(3)) to build a gradient film for which the amine content changes over a 10-20 mm distance. Both X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirm the presence of a chemical gradient across the surface of the film. As expected, a greater density of amine functionalities and lower contact angle were found at the bottom of the gradient relative to the top. The local steepness of the gradient was systematically controlled by changing the rate of infusion. Fast rates of infusion created gradient surfaces where the amine content changed slowly along the surface and never reached saturation, whereas slow rates of infusion formed a surface exhibiting a steep rise in amine content followed by saturation. The steepness of the gradient was also changed at predefined positions along its length by programming the rate of infusion. Gradients prepared using six-step, three-step, and two-step programmed infusion rates are shown. The data fit nicely to a kinetic model that assumes first-order kinetics. The ability to manipulate the gradient profile is particularly vital for applications that rely on mass transport and/or those that require spatial control of gradient properties.  相似文献   

3.
A chemical gradient possessing gradual change of amine concentration for every 100 carbon atoms (NHx/100 C) from 4.03 to 1.98 was prepared by plasma polymerization of allylamine on polypropylene films. Electron spectroscopy for chemical analysis and water contact angle (WCA) measurements revealed that the nitrogen incorporation resulted in the amine functionality (C? N binding) and, therefore, the formation of the wettability gradient. The gradient showed the WCAs varied from 15° to 90° as the change of amine concentration on the gradient from the nitrogen rich end to the nitrogen deprived end. Furthermore, the interactions between the gradient with mammalian cells revealed that more than twofold cell density was found at the nitrogen rich end when compared with the nitrogen deprived end. Plasma polymerization was demonstrated as an effective method to create controllable chemical gradient and the obtained allylamine gradient was useful for biomaterial applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1361–1367  相似文献   

4.
采用高压静电纺丝技术, 在非对称异型电极上制备得到放射状聚酰亚胺(PI)纳米纤维膜. 采用环境扫描电子显微镜(ESEM)观察了PI膜的微观形貌以及纳米纤维的排列状态; 采用接触角测量仪研究了水滴浸润性的变化; 采用高敏感性力学微电力学天平测量了水滴的黏附力, 分析了微观形貌变化与水滴浸润性质和黏附性质的关系. 结果表明, 该PI纳米纤维膜沿着非对称异型电极三角电极至弧型电极方向纤维排列由密到疏, 呈放射状, 具有独特的微结构梯度; 整个纤维膜上的PI纳米纤维直径均一且具有光滑均匀表面, 纤维与纤维之间的距离约为几微米到几十微米. 由于PI纳米纤维膜所具有的独特的微结构梯度, 致使沿着微结构梯度方向水滴的接触角(从超疏水到疏水)和黏附力(从低黏附到高黏附)均表现出梯度变化的特征.  相似文献   

5.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

6.
Huang T  Pawliszyn J 《Electrophoresis》2002,23(20):3504-3510
A simple microfabrication technique for the preparation of a tapered microchannel for thermally generated pH gradient isoelectric focusing (IEF) has been demonstrated. The tapered channel was cut into a plastic sheet (thickness was 120 microm), and the channel was closed by sandwiching the plastic sheet between two glass microscope slides. The length of the microchannel was 5 cm. The width of the separation channel was 0.4 mm at the narrow end and 4 mm at the wide end. The channel was coated with polyacrylamide to prevent electroosmotic flow (EOF) during focusing. Two electrolyte vials were mounted on top of each end of the channel with the wide end of the channel connected to the cathodic vial and the narrow to the anodic vial. The feasibility of the thermally generated pH gradient in a tapered channel was demonstrated. Important parameters that determined the feasibility of using a thermally generated pH gradient in a tapered channel were analyzed. Parameters to be optimized were control of EOF and hydrodynamic flow, selection of power supply mode and prevention of local overheating and air bubble formation. Tris-HCl buffer, which has a high pK(a) dependence with temperature, was used both to dissolve proteins and as the electrolyte. The thermally generated pH gradient separation of proteins was tested by focusing dog, cat and human hemoglobins with a whole column detection capillary IEF (CIEF) system.  相似文献   

7.
Directing droplets using microstructured surfaces   总被引:1,自引:0,他引:1  
Systematic variation of microscale structures has been employed to create a rough superhydrophobic surface with a contact angle gradient. Droplets are propelled down these gradients, overcoming contact angle hysteresis using energy supplied by mechanical vibration. The rough hydrophobic surfaces have been designed to maintain air traps beneath the droplet by stabilizing its Fakir state. Dimensions and spacing of the microfabricated pillars in silicon control the solid-liquid contact area and are varied to create a gradient in the apparent contact angle. This work introduces the solid-liquid contact area fraction as a new control variable in any scheme of manipulating droplets, presenting theory, fabricated structures, and experimental results that validate the approach.  相似文献   

8.
To investigate the influence of the protein surface-density gradient on endothelial cell alignment, a novel approach for the fabrication of a laminin gradient on gold-coated substrates has been developed in this study. Our approach involves programmed inkjet printing of an alkanethiol (11-mercaptoundecanoic acid, C10COOH, MUA) gradient onto gold-coated substrates, followed by backfilling with 11-mercapto-1-undecanol (C11OH, MUD). The –COOH moieties were activated and then covalently linked with laminin. This treatment led to a surface-density gradient of laminin. Contact angle measurement, X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy were employed to characterize the self-assembled monolayers (SAMs) and protein gradient, respectively. Results proved the feasibility of the fabrication of a protein gradient by using the inkjet printing technique. The self-assembled monolayer gradients displayed a high packing density, as indicated by dynamic contact angle measurement. More importantly, the gradient slope was easily tunable over a significant distance from 20 to 30 mm. The laminin gradient was clearly visible by fluorescence microscopy observation. Endothelial cells cultured on the surface-density gradient of laminin demonstrated a strong alignment tendency in parallel to the gradient. The higher the laminin density the more cells were observed. The result indicates that cell attachment is dependent on the surface density of laminin. This work broadens our methodology to investigate chemical stimuli-induced cell directional alignment. It is potentially important for understanding cell alignment/ingrowth behavior for angiogenesis and implant technology including tissue-engineered structures.  相似文献   

9.
A model for co- and counter-current imbibition through independent capillaries has already been developed and experiments conducted to verify the theory [E. Unsal, G. Mason, N.R. Morrow, D.W. Ruth, J. Colloid Interface Sci. 306 (2007) 105]. In this paper, the work is extended to capillaries which are connected laterally and in which cross-flow can take place. The fundamental pore geometry is a rod in an angled round-bottomed slot with a gap between the rod and a capping glass plate. The surfaces of the slot, rod and plate form capillaries and interconnecting passages which have non-axisymmetric cross-sections. Depending on the gap size either (i) a large single meniscus, (ii) two menisci one on each side of the rod, or (iii) three menisci, one between the rod and the glass additional to the ones on each side can be formed. A viscous refined oil was applied to one end of the capillaries and co-current and counter-current spontaneous imbibition experiments were performed. The opposite end was left open to the atmosphere for co-current experiments. When the gap between the rod and the plate was large, the imbibing oil advanced into the tubes with the meniscus in the largest capillary always lagging behind the two menisci in the other two smaller capillaries. For counter-current imbibition experiments the open end was sealed and connected to a sensitive pressure transducer. In some experiments, the oil imbibed into the smaller capillaries and expelled air as a series of bubbles from the end of the largest capillary. In other experiments, the oil was allowed to imbibe part way into the tubes before counter-current imbibition was started. The meniscus curvatures of the capillaries have been calculated using the Mayer and Stowe-Princen method for different cell slot angles and gap sizes using a value of zero for the contact angle. These values have been compared with actual values by measuring the capillary rise in the tubes; agreement was very close. A model for co-current and counter-current imbibition has also been developed. The significance of this model is that some hydraulic/capillary properties are common for both co-current and counter-current imbibition. The experiments give an illustration of behavior expected in a real porous material and verify the importance of the 'perfect cross-flow' modification to the 'bundle of parallel tubes' model.  相似文献   

10.
通过低能量功能端基的表面富集作用,研究了聚苯乙烯(PS)薄膜在聚甲基丙烯酸甲酯(PMMA)表面上的铺展和润湿动力学.用光学显微镜跟踪了PS薄膜的润湿行为,并对高分子熔体膜中非连续部分尺寸的增大速率进行了测定.分别用XPS和AFM对PS薄膜的表面组成和PS液滴的平衡接触角进行了测定.发现具有低表面能的氟碳端基在薄膜表面富集使PS薄膜的表面张力下降,并使PS液滴在PMMA表面上的平衡接触角减小,从而使高分子熔体膜中非连续部分尺寸的增长速率下降,得到了与液液界面铺展和润湿理论一致的实验结果.  相似文献   

11.
A low-density polyethylene (LDPE) surface with a sharp wettability gradient and high hysteresis was prepared, on which a unique behavior of water drops was found. The water contact angle of one water drop on the less hydrophobic region was larger than that on the more hydrophobic end, which was much different from the general phenomenon. The unique behavior is believed to be induced by the high hysteresis of the LDPE surface and the sharp change in wettability. The driving and hysteresis forces acting on the water drops were calculated and analyzed in detail. The reasons resulting to such a unique phenomenon were further explained.  相似文献   

12.
分析壳聚糖棒材在湿态环境下力学性能衰减速率过快的原因,通过对植物叶拒水机理的仿生,将壳聚糖表面进行复合式仿生疏水改性.先对壳聚糖棒材表面进行酰化改性,降低了棒材表面极性,使棒材表面形成一种微观凹凸的粗糙结构.然后在此粗糙结构上进行生物酯涂覆,以达到仿植物叶的拒水效果.结果表明,壳聚糖棒材表面经过乙酰化处理,表面变得粗糙.经接触角实验和吸水速率测试表明,壳聚糖棒材表面经酰化改性后,降低了材料表面的极性及亲水性.通过控制酰化反应时间,能有效地增大棒材的接触角,使得最外层的生物酯涂层紧密结合,经模拟体液浸泡实验,该材料3个月内完全拒水,达到了预期的目的.  相似文献   

13.
14.
A two-dimensional nanodrop on a hydrophilic solid surface decorated with nanopillars is examined using a nonlocal density functional theory. It is shown that, in contrast to the commonly used Wenzel formula, even an extremely small roughness can considerably increase the contact angle. The contact angle depends on the distance between pillars, their height and width, as well as their composition. It was found that for all selected pillar heights and compositions, the largest contact angle is obtained when the distance between pillars acquires a size at which the liquid molecules can no longer penetrate between them. The further decrease in the interpillar distance decreases the contact angle, in qualitative agreement with the Cassie-Baxter formula. Considering pillars of various compositions, the role of the gradient of the fluid-solid interaction potential is examined. The presence of such a gradient does not allow the formation of a stable nanodrop on the surface. However, asymmetrical metastable nanodrops can be formed.  相似文献   

15.
A micropump controlled by EWOD: wetting line energy and velocity effects   总被引:1,自引:0,他引:1  
Shabani R  Cho HJ 《Lab on a chip》2011,11(20):3401-3403
A Laplace pressure gradient between a droplet and a liquid meniscus was utilized to create an on-demand constant flow rate capillary pump. Electrowetting on dielectric was implemented to induce the pressure gradient in the microchannel. For an initial droplet volume of 0.3 μL and a power of 12 nW a constant flow rate of 0.02 μL s(-1) was demonstrated. The effects of the wetting line energy on the static contact angle and the wetting line velocity on the dynamic contact angle in the pump operation were studied. Sample loading on-demand could be achieved by regulating an electric potential.  相似文献   

16.
In this work, an extensive analysis on direct contact membrane distillation (DCMD) performance was developed to estimate the mass flux and the heat efficiency, considering transport phenomena, membrane structural properties and most sensitive process parameters, with the aim to provide optimization guidelines for materials and methods. The results showed that an increase of the temperature gradient resulted in the enhancement of both transmembrane flux and thermal efficiency. The investigation of the effects of membrane properties confirmed that better DCMD performance was achieved when using polymeric membranes characterized by low thermal conductivity (flux and thermal efficiency declined by 26% and 50%, respectively, when increasing thermal conductivity from 0.1 to 0.5 W/m K), and high porosity. An optimal thickness value (around 0.7 mm) was identified when operating at low temperature gradient (<5 °C). However, at higher temperature gradient (>10 °C), increasing the membrane thickness from 0.25 to 1.55 mm resulted in a flux decay of about 70% without a significant improvement in thermal efficiency.  相似文献   

17.
A simple yet versatile method was developed to prepare a low-density polymerization initiator gradient, which was combined with surface-initiated atom transfer radical polymerization (ATRP) to produce a well-defined poly(2-hydroxyethyl methacrylate) (HEMA) gradient substrate. A smooth variation in film thickness was measured across the gradient, ranging from 20 A to over 80 A, but we observed a nonmonotonic variation in water contact angle. Fits of X-ray reflectivity profiles suggested that at the low graft density end, the polymer chain structure was in a "mushroom" regime, while the polymer chains at high graft density were in a "brush" regime. It was found that the "mushroom" region of the gradient could be made adhesive to cells by adsorbing adhesion proteins, and cell adhesion could be tuned by controlling the density of the polymer grafts. Fibroblasts were seeded on gradients precoated with fibronectin to test cellular responses to this novel substrate, but it was found that cell adhesion did not follow the expected trend; instead, saturated cell adhesion and spreading was found at the low grafting density region.  相似文献   

18.
Motion of drops on a surface induced by thermal gradient and vibration   总被引:1,自引:0,他引:1  
It is well known that a liquid drop with a low contact angle (approximately 45 degrees ) and low wetting hysteresis moves toward the colder region of a temperature gradient substrate as a result of the thermal Marangoni force. A moderately sized water drop, however, usually does not move on such a surface because of the overwhelming effect of hysteresis. The water drop can, however, be forced to move when it is vibrated on a temperature gradient surface with its velocity exhibiting maxima at the respective Rayleigh frequencies. A simple model is presented that captures the dependence of drop velocity on hysteresis, vibration amplitude, and the forcing and resonance frequencies of vibration.  相似文献   

19.
以四烯丙基联苯二酚(TABP)、 双酚A和十氟联苯为原料, 通过室温缩聚制得含氟聚芳醚(FPAEs), 再将其与3-巯基丙酸进行加成, 制得羧基化含氟聚芳醚(CFPAEs). 通过改变TABP的投料量来调节产物的羧基含量. 以N-甲基吡咯烷酮(NMP)为溶剂, 将CFPAE涂层喷涂在马口铁上. 研究发现, CFPAE涂层具有优异的热稳定性和机械强度, 羧基的引入可显著提高含氟聚芳醚涂层的附着力. 当羧基含量为0.265 mmol/g时, 涂层的黏附力等级为0级, 铅笔硬度为6H, 不引起涂层破坏的最小轴棒直径为0.5 mm, 水接触角为103.9°. 此外, CFPAE涂层还具有优异的耐酸、 耐盐、 抗紫外老化和防腐蚀等性能. 研究结果表明, 羧基化是拓展含氟聚芳醚在特种氟碳涂料上应用的一种有效途径.  相似文献   

20.
The surface localization of polymer chain ends has been shown to be an effective method for surface composition control in amorphous polymer films. This work determines chain end distribution in thin polyethersulfone (PESU) films end‐capped with deuterated compounds of varying size and composition. Neutron reflectivity revealed the preferential localization of chain ends to the PESU‐air interface, independent of chain end identity. The length scale of the chain end concentration gradient was determined to differ from that predicted for flexible chain polymers. Atomic force microscopy and contact angle analysis demonstrated that chain end localization allows for improved control of nanoscale and macroscale surface properties of PESU films. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 293–301  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号