首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
We present a mechanistic model of retrograde condensation processes in two- and three-dimensional capillary tube networks under gravitational forces. Condensate filling-emptying cycles in pore segments and gas connection–isolation cycles are included. With the pore-level distribution of gas and condensate in hand, we determine their corresponding relative permeabilities. Details of pore space and displacement are subsumed in pore conductances. Solving for the pressure field in each phase, we find a single effective conductance for each phase as a function of condensate saturation. Along with the effective conductance for the saturated network, the relative permeability for each phase is calculated. Our model porous media are two- and three-dimensional regular networks of pore segments with distributed size and square cross-section. With a Monte Carlo sampling we find the optimum network size to avoid size effects and then we investigate the effect of network dimensionality and pore size distribution on the relative permeabilities of gas and condensate.  相似文献   

2.
Surfactant Concentration and End Effects on Foam Flow in Porous Media   总被引:2,自引:0,他引:2  
Foaming injected gas is a useful and promising technique for achieving mobility control in porous media. Typically, such foams are aqueous. In the presence of foam, gas and liquid flow behavior is determined by bubble size or foam texture. The thin-liquid films that separate foam into bubbles must be relatively stable for a foam to be finely textured and thereby be effective as a displacing or blocking agent. Film stability is a strong function of surfactant concentration and type. This work studies foam flow behavior at a variety of surfactant concentrations using experiments and a numerical model. Thus, the foam behavior examined spans from strong to weak.Specifically, a suite of foam displacements over a range of surfactant concentrations in a roughly 7m2, one-dimensional sandpack are monitored using X-ray computed tomography (CT). Sequential pressure taps are employed to measure flow resistance. Nitrogen is the gas and an alpha olefin sulfonate (AOS 1416) in brine is the foamer. Surfactant concentrations studied vary from 0.005 to 1wt%. Because foam mobility depends strongly upon its texture, a bubble population balance model is both useful and necessary to describe the experimental results thoroughly and self consistently. Excellent agreement is found between experiment and theory.  相似文献   

3.
A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns – not just globally, but also inside these localized failure zones.  相似文献   

4.
Numerical simulations have been performed to evaluate the accuracy of the multimode Giesekus model in predicting the flow behavior of a rheologically well characterized low-density polyethylene melt in a lubricated cross-slot channel. Specifically, the fidelity of the numerical results is established by detailed comparison with flow-induced birefringence measurements in a new optical rheometer with lubricated side walls that allows the creation of ideal two-dimensional flow kinematics that lead to the elimination of end effects commonly encountered in flow birefringence measurements. Based on these comparisons, the ability of the multimode Giesekus model to capture the flow characteristics with reasonable accuracy in the experimentally available Wi range of 21 to 29 has been established. However, it should be noted that the model predictions are, at best, qualitative in the vicinity of the stagnation point. The discrepancy between numerically predicted and experimentally observed stresses in this region is mainly attributed to the inaccuracy of the experimental data that stem from the occurrence of multiple orders of retardation within the measurement volume. Overall, these studies have paved the way for the development of a hi-fidelity lubricated cross-slot channel rheometer.  相似文献   

5.
An optical measurement method using image processing for two-phase flow pattern characterization in minichannel is developed. The bubble frequency, the percentage of small bubbles as well as their velocity are measured. A high-speed high-definition video camera is used to measure these parameters and to identify the flow regimes and their transitions. The tests are performed in a 3.0 mm glass channel using saturated R-245fa at 60 °C (4.6 bar). The mass velocity is ranging from 100 to 1500 kg/m2 s, the heat flux is varying from 10 to 90 kW/m2 and the inlet vapor quality from 0 to 1. Four flow patterns (bubbly flow, bubbly–slug flow, slug flow and annular flow) are recognized. The comparison between the present experimental intermittent/annular transition lines and five transition lines from macroscale and microscale flow pattern maps available in the literature is presented. Finally, the influence of the flow pattern on the heat transfer coefficient is highlighted.  相似文献   

6.
Flow over a rectangular porous block placed in a fixed width channel is considered and the influence of block aspect ratio on the heat transfer rate from the block is examined. A non-porous solid block is also accommodated to compare the effect of porosity on the flow field and heat transfer characteristics. Aspect ratio and the porosity of the block are varied in the simulations. A numerical scheme employing a control volume approach is considered when predicting the flow and temperature fields. The Reynolds number is selected to yield the mix convection situation in the flow field. It is found that the aspect ratio significantly influences Nu and Gr numbers, in which case increasing the aspect ratio enhances Nu while lowering Gr. Increasing porosity improves the heat transfer rates from the porous block, provided that at high aspect ratios, this situation ceases due to blockage effect of the body in the channel.  相似文献   

7.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

8.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

9.
Direct contact condensation (DCC) of steam jet in subcooled water flow in a channel was experimentally studied. The main inlet parameters, including steam mass flux, water mass flux and water temperature were tested in the ranges of 200–600 kg/(m2 s), 7–18 × 103 kg/(m2 s), 288–333 K, respectively. Two unstable flow patterns and two stable flow patterns were observed via visualization window by a high speed camera. The flow patterns were determined by steam mass flux, water mass flux and water temperature, and the relationship between flow patterns and flow field parameters was discussed. The results indicated that whether pressure or temperature distributions on the bottom wall of channel could represent different flow patterns. And the position of pressure peak on the bottom wall could almost represent the condensation length. The upper wall pressure distributions were mainly dependent on steam and water mass flux; and the upper wall temperature distributions were affected by the three main inlet parameters. Moreover, the bottom wall pressure and temperature distributions of different unstable flow patterns had similar characteristics while those of stable flow patterns were affected by shock and expansion waves. The underlying cause of transition between different flow patterns under different inlet parameters was reflected and discussed based on pressure distributions.  相似文献   

10.
Buoyant flow is analysed for a vertical fluid saturated porous layer bounded by an isothermal plane and an isoflux plane in the case of a fully developed flow with a parallel velocity field. The effects of viscous dissipation and pressure work are taken into account in the framework of the Oberbeck–Boussinesq approximation scheme and of the Darcy flow model. Momentum and energy balances are combined in a dimensionless nonlinear ordinary differential equation solved numerically by a Runge–Kutta method. Both cases of upward pressure force (upward driven flows) and of downward pressure force (downward driven flows) are examined. The thermal behaviour for upward driven flows and downward driven flows is quite different. For upward driven flows, the combined effects of viscous dissipation and pressure work may produce a net cooling of the fluid even in the case of a positive heat input from the isoflux wall. For downward driven flows, viscous dissipation and pressure work yield a net heating of the fluid. A general reflection on the roles played by the effects of viscous dissipation and pressure work with respect to the Oberbeck–Boussinesq approximation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号