首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that the heterogeneous recombination of nitrogen atoms on a catalytically active surface in a stream of dissociated air is accompanied by intense gas-phase recombination of the nitrogen in exchange reactions whose rate is determined by the rate of heterogeneous recombination of atomic oxygen.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 156–158, May–June, 1980.  相似文献   

2.
A study was made of the fully developed homogeneous flow of a two-temperature partially ionized plasma in the channel of a disc-type Hall generator. Experiments with a disc-type generator are described in [1, 2]. In a simplified statement, the problem is analogous to that considered in [3]. The present article takes the chemical reactions of ionization and recombination into account. The energy equation for an electron gas is brought down to a differential form which permits clarification of the question of the applicability of the Kerrebrock [4] formula for the difference in the temperatures of the electrons and the heavy particles.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 18–25, November–December, 1970.In conclusion, the author thanks V. V. Gogosov for his interest in the work and for his valuable observations.  相似文献   

3.
As noted in a paper by one of the authors [1], when a hot ionized gas expands into a vacuum, at a certain moment ionization equilibrium must necessarily break down. Shortly after this point, which may be found by the method indicated in [1], ionizing events become very rare and only recombination occurs in the gas. In [1] photorecombination and triple collisions with the capture of an electro to the ground level of the atom were considered. Here the recombination did not proceed to the end: on expanding to infinity and cooling to zero the gas remained partially ionized.Papers have recently appeared [2–7] in which the significant role of triple collisions with the capture of electrons to upper atomic levels is noted. The recombination process has a cascade character at low temperatures and densities which are not excessively small. At first, the electron is captured by one of the upper atomic levels in a triple collision with an ion and another electron. Subsequently, as a result of electron collisions of the second kind, and later also as a result of radiative transitions, the bound electron descends through the energy levels to the atomic ground state. The recombination coefficient for such a process depends much more strongly on the electron temperature T than for a triple collision with capture directly by the ground level (as T–9/2 as opposed to T–1), and at low temperatures cascade recombination proceeds much more quickly than capture to the ground level. Since this casts doubt upon the conclusions of [1] regarding the residual ionization when a plasma expands into a vacuum, we were led to re-examine the question, which, as will be clear from what follows, is not considerably more complicated.  相似文献   

4.
An analytic form is obtained for the population distribution function in an atomic plasma as a series in successive time derivatives of the population of the first level. The first approximation includes the well-known method of a stationary sink. The quasistationary distribution obtained for hydrogen agrees well with numerical calculations of recombination and ionization, and for lithium, helium, and argon the quasistationary distribution gives qualitative agreement with numerical calculations.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 18–26, July–August, 1972.We should like to thank B. F. Gordiets for a helpful discussion.  相似文献   

5.
A method is proposed for investigating a chemically reacting plasma by means of an electric probe whose potential is modulated by a high-frequency sinusoidal voltage. The method is based on the use of a numerical solution of the problem of an electric probe introduced under negative potential into a steady-state low-temperature plasma formed in a mixture of chemically reacting molecular gases. The conditions under which the charged particle concentration in the region undisturbed by the probe is constant as a result of equilibrium between the ionization and recombination rates are examined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 114–119, November–December, 1987.  相似文献   

6.
A scheme and the results of a calculation by the method of characteristics are presented for free expansion of a nonviscous, thermally nonconducting, nonequilibrium, optically thick hydrogen plasma from a round supersonic nozzle. The elementary process determined is considered to be collision-radiative recombination. A strong disturbance in the thermal and ionization equilibrium are observed in the flow field. The effect of relaxation processes on the geometry of flow and the field of gas-dynamic parameters is examined. The results of the calculations are compared with analogous data for an ideal perfect gas.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 27–30, July–August, 1972.  相似文献   

7.
The problem is considered of the passage of a direct current through a solution of a weak electrolyte in a two-dimensional cell. Allowance is made for the electrochemical reactions of dissociation and reconbination which take place in the electrolyte when the rate of dissociation of the molecules is regarded as dependent on the electric field intensity [1–3]. For electrolytes whose recombination coefficient is of the order of magnitude of the Langevin coefficient, theoretical current—voltage characteristics are given for the limiting cases of large and small values of the characteristic times for the ion concentrations to be changed by electrochemical reactions and the transport of ions by the electric field. A method of determining the dissociation rate, the recombination coefficient, and the ion mobility coefficients is proposed on the basis of comparison of the theoretical and experimental current—voltage characteristics.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6. pp. 113–120, November–December, 1984.  相似文献   

8.
The kinetics of recombination in a diatomic or polyatomic gas dispersing into a cavity is investigated in a model gas with one ionization potential and one electron affinity. In addition to the recombination reaction in triple collisions, which play the most important role in the case of a monatomic gas [1], dissociative recombination, ion-atom charge transfer, and reactions involving negative ions are considered. The qualitative differences in the kinetics of recombination of a molecular gas (in comparison with a monatomic gas) are due to the smallness of the relative electron concentrations at the instant of disturbance of ionization equilibrium and to the important contribution of dissociative recombination reactions and the kinetics of formation and recombination of negative ions.In addition, owing to the greater specific heat of a polyatomic gas and the corresponding lower rate of cooling on dispersion, recombination due to collision of three charged particles is not, as distinct from the case of a monatomic gas, decisive for the asymptotic values of the adiabatic exponent and residual ionization. For this reason the values of the adiabatic exponent can be assigned irrespective of a in the solution of the equations of the kinetics of recombination of diatomic and polyatomic gases. Expressions for the instant of failure of the equilibrium relationship between electrons and, respectively, positive and negative ions are obtained.The relationship between the charged-particle concentration in a gas in ionization nonequilibrium and the time for known values of the reaction rate constants is expressed by quadratures. The values of the rate constants of some ionization processes are known only in order of magnitude. However, available data on rate constants indicate that for practically any initial data for dispersion of the products of explosion or combustion of chemical compounds ionization equilibrium is upset at a time when there is still an equilibrium ratio of concentrations of electrons and negative ions.  相似文献   

9.
A kinetic model of heterogeneous recombination in dissociated carbon dioxide on high-temperature heat-shield coatings is developed; the model takes into account the nonequilibrium adsorption-desorption reactions of oxygen atoms and their recombination in the Eley-Rideal and Langmuir-Hinshelwood reactions. On the basis of a comparison of the calculated heat fluxes in dissociated carbon dioxide with those measured in the VGU-3 plasma generator of the Institute for Problems in Mechanics of the Russian Academy of Sciences (IPM RAS) and the available literature data, the parameters of the catalysis model are chosen for the glassy coating of the Buran orbiter tile heat shield based on the SiO2–B2O3–SiB4 system. The effects of heterogeneous recombination proceeding in accordance with the Langmuir-Hinshelwood mechanism, as well as the processes involving carbon atoms and those involving physically adsorbed oxygen atoms, on the heat fluxes to the glassy coating are analyzed on the surface temperature range from 300 to 2000 K.  相似文献   

10.
Increased interest has recently been shown in the low-temperature plasma produced by the action of electron beams on dense gases. This interest is due to the possibility of investigating plasma-chemical reactions in highly nonequilibrium conditions [1] and also to the prospect of introducing new methods of pumping gas lasers: by recombination [12], charge transfer [3], the formation of complex compounds [4, 5], etc. The plasma in question is characterized by high rates of reactions involving charged and neutral particles, which largely accounts for the difficulty of investigating such a plasma experimentally. For instance, problems of determining the kind of ions predominating in the plasma, the mechanism of recombination decay, the nature of the luminescence on individual spectral transitions, etc., become nontrivial. In this paper we investigate the decay of a plasma in neon and in an He-Ne mixture at high gas pressure.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 16–22, January–February, 1978.We thank G. A, Mesyats for assistance in this work and Yu. I. Bychkov and V. V. Ryzhov for discussion of the results.  相似文献   

11.
Kovalev  V. L.  Suslov  O. N. 《Fluid Dynamics》1988,23(4):579-585
An asymptotic expansion of the solution, for large Schmidt numbers, of the system of equations of a chemically nonequilibrium multicomponent boundary layer on the catalytic surface of a blunt body [1] is used to obtain expressions for the diffusion fluxes of the reaction products and chemical elements and the heat flux as functions of the gradients of the reaction product concentrations, chemical element concentrations and enthalpy across the boundary layer. It is shown that when the body is exposed to a supersonic air flow, the diffusion separation of the chemical element oxygen depends importantly on the atom concentration at the outer edge of the boundary layer and the nature of the homogeneous and heterogeneous catalytic reactions. If the surface promotes the rapid recombination of oxygen atoms and is chemically neutral with respect to nitrogen atoms, then an excess of the chemical element oxygen is formed on the body. Otherwise we get an enhanced concentration of the element nitrogen. As distinct from the case of an ideally catalytic wall [2–4], on a surface possessing the property of catalytic selectivity the diffusion separation of chemical elements takes place even when only atoms are present at the outer edge of the boundary layer. On a chemically neutral surface diffusion separation may be caused by homogeneous recombination reactions between oxygen and nitrogen atoms if their rate constants are essentially different.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 115–121, July–August, 1988.  相似文献   

12.
Experiments show that a weakly conducting fluid in a plane-parallel system of electrodes is set into motion if the field intensity is sufficiently great [1–5]. The loss of stability is due to the formation of charges near the electrodes and the influence of the Coulomb forces on these charges. The formation of the space charges is usually attributed to oxidation-reduction electrode reactions and bulk recombination of the ions formed at the electrodes [1–4]. In the present paper, the stability of a weakly conducting fluid in a plane-parallel system of electrodes with symmetric distribution of the space charge is studied. The methods of the theory of solution bifurcation are used to construct the stationary flow which arises after the loss of stability and to investigate the stability of this flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 20–26, July–August, 1981.  相似文献   

13.
The results of an experimental and numerical investigation of the heat transfer between a subsonic jet of dissociated nitrogen and a titanium surface, through which molecular oxygen is blown into the jet, are presented. It is established that in the nonequilibrium boundary layer regime the dependence of the heat flux on the injected oxygen flow rate is nonmonotonic. At a certain flow rate the heat transfer to the titanium surface reaches a maximum that considerably exceeds (by 20%) the heat transfer to an impermeable wall. The observed increase in heat transfer in the presence of injection is attributed to the interaction of the gas-phase exchange reactions and the recombination of atoms on the titanium surface, which has sharply different catalytic properties with respect to the recombination of nitrogen and oxygen atoms.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 148–155, July–August, 1991.  相似文献   

14.
Distribution of parameters in the region of disturbance of a plasma near the surface of an electrode is considered based on diffusion equations. Thermoelectronic and thermionic emission from the electrode surface, the Schottky effect, and volume ionization and recombination are borne in mind. Two regions are assumed in the solution, namely, the region of ambipolar diffusion and the region of the space charge. A comparatively simple geometry for the discharge gap, given in the form of two infinite plane-parallel electrodes, is considered. A comparison is carried out with calculations for a thermally balanced region of a plasma disturbance.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 13–17, January–February, 1976.  相似文献   

15.
An analysis is made of the effects of certain processes in the interior of the gas and at the electrode surface on the potential drop near the electrode in a discharge in a dense, slightly ionized gas. Thermionic emission from the electrode, the Schottky effect, diffusion, and volume and surface ionization and recombination are taken into account. The analysis is carried out for a simple discharge-gap geometry: two infinite, plane-parallel electrodes. Relations are found for the potential drop near the electrode in a two-temperature plasma as a function of the discharge parameters and emission characteristics of the material. The calculated results are compared with experiment.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 3–12, July–August, 1971.The authors thank G. A. Lyubimov for interest in the study and for discussion of the results, and B. V. Parfenov for graciously furnishing the necessary experimental data from [13].  相似文献   

16.
Low-frequency oscillations in a circular discharge plasma are studied experimentally. Values of the magnetic field corresponding to the generation and collapse of ionization oscillations are determined. An analysis of plasma stability in the absence of ionization equilibrium is conducted. Agreement is noted between the theoretical and experimental results.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 171–173, May–June, 1972.  相似文献   

17.
A three-dimensional flow of dissociating air past blunt bodies is investigated in the framework of the thin viscous shock layer theory. Multicomponent diffusion and homogeneous chemical reactions, including dissociation, recombination, and exchange reactions, are taken into account. The generalized Rankine-Kugoniot conditions are specified on the shock wave and the conditions which take into account the heterogeneous catalytic reactions, on the surface of the body. The viscous shock layer equations are solved together with the heat equations inside the coating, which is carbon with a deposited thin film of SiO2, or quartz. The case of a thermally insulated surface is also considered. The problem for the case of the motion of a body along the re-entry trajectory into Earth's atmosphere is investigated numerically. The temperature of the surface and the heat flux toward it are given as a dependence on the height (tine) of the flight for different cases of the specification of the catalytic reactions. It is shown that the difference between the heat fluxes towards the thermally insulated surface and the fluxes toward the heat-conducting surface in the neighborhood of the stagnation point is of the order of 6–12% for all the cases considered. This makes it possible to decouple the solution of the problem of heat conduction in the body.Translated fron Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 140–146, November–December, 1985.deceased  相似文献   

18.
The secondary-electron energy distribution function in the neighborhood of a narrow electron beam is calculated. The total energy range is subdivided into three regions: the Coulomb region, a region of linear ionization cross sections, and an energy region below the ionization potential. Approximate expressions are found for the secondary-electron density and the plasma frequency in the region of the beam.Translated from Zhurnal Prikladnoi Mekhaniki i Technicheskoi Fiziki, No. 3, pp. 24–28, May–June, 1973.  相似文献   

19.
The method is described and the results are presented for numerical calculations of a system of equations of nonsteady gasdynamics, radiation transfer in the continuous spectrum, and the kinetics of collisional ionization and ionization by radiation, which describe the dispersion and cooling of a spherical volume of He. A comparison is made with calculations performed on the assumption of thermodynamic equilibrium.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 36–41, March–April, 1976.  相似文献   

20.
O. B. Larin 《Fluid Dynamics》1979,14(6):838-844
The ignition of hydrogen blown into a turbulent supersonic boundary layer on a flat plate is investigated numerically. It is assumed that the mixture consists of six chemically active components H, O, OH, H2O, O2, H2 and inert nitrogen N2. The boundary layer is divided into outer and inner regions, for which different expressions for the coefficients of turbulent transport are used. The influence of pulsations on the rates of the chemical reactions, and also the back reaction of the chemical processes on the mechanism of turbulent transfer are not taken into account. The surface of the plate is assumed to be absolutely catalytic with respect to the recombination reactions of the H and O atoms. The influence of the blowing intensity, the Mach number in the outer flow, and the pressure on the ignition delay is analyzed. The possibility of effective porous cooling of the surface when there is combustion in the boundary layer is demonstrated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 33–40, November–December, 1979.I thank V. G. Gromov and V. A. Levin for their interest in the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号