首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With 12 crystal forms, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecabonitrile (a.k.a. ROY) holds the current record for the largest number of fully characterized organic crystal polymorphs. Four of these polymorph structures have been reported since 2019, raising the question of how many more ROY polymorphs await future discovery. Employing crystal structure prediction and accurate energy rankings derived from conformational energy-corrected density functional theory, this study presents the first crystal energy landscape for ROY that agrees well with experiment. The lattice energies suggest that the seven most stable ROY polymorphs (and nine of the twelve lowest-energy forms) on the Z′ = 1 landscape have already been discovered experimentally. Discovering any new polymorphs at ambient pressure will likely require specialized crystallization techniques capable of trapping metastable forms. At pressures above 10 GPa, however, a new crystal form is predicted to become enthalpically more stable than all known polymorphs, suggesting that further high-pressure experiments on ROY may be warranted. This work highlights the value of high-accuracy crystal structure prediction for solid-form screening and demonstrates how pragmatic conformational energy corrections can overcome the limitations of conventional density functionals for conformational polymorphs.

Crystal structure prediction suggests that the low-energy polymorphs of ROY have already been found, but a new high-pressure form is predicted.  相似文献   

2.
With six polymorphs coexisting at room temperature, 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) is the top system in the current Cambridge Structural Database (Feb. 2005) for the number of polymorphs of solved crystal structures. Here we report two new ROY polymorphs, Y04 and YT04, and the crystal structure of YT04. Y04 is a metastable polymorph that tends to crystallize first from a melt at room temperature, and YT04 is a product of solid-state transformation of Y04. Despite its late discovery, YT04 is the densest among the polymorphs at 25 degrees C and likely the second most stable at 0 K. The conformation of ROY in YT04 is similar to those in the other two yellow polymorphs (Y and YN) but significantly different from those in the orange and red colored polymorphs (ON, OP, ORP, and R). Having escaped years of solution crystallization in several laboratories, Y04 and YT04 exemplify polymorphs that are likely missed by solvent-based screening and discovered through alternative routes.  相似文献   

3.
The analysis of the thermograms of thalidomide obtained for the two reported polymorphs and β by differential scanning calorimetry (DSC) shows some inconsistencies that are discussed in the present work. The conception of a new polymorph form, named β*, allowed us to explain the observed thermal behavior more satisfactorily. This new polymorph shows enantiotropy with both and β polymorphs, reflected in the unique endotherm obtained in the DSC-thermograms, when a heating rate of 10 °C/min is applied. Several additional experiments, such as re-melting of both polymorph forms, showed that there is indeed a new polymorph with an endotherm located between the endotherms of and β. IR, Raman, and powder X-ray permit us to characterize the isolated compound, resulting from the re-melting of both polymorph forms. Mechanical calculations were performed to elucidate the conformations of each polymorph, and ab initio quantum chemical calculations were performed to determine the energy of the more stable conformers and the spatial cell energy for both polymorphs and β. These results suggested a possible conformation for the newly discovered polymorph β*.  相似文献   

4.
DA-5018 is a new capsaicin derivative and has analgesic effect. The objective of this work was to investigate the existence of polymorphs and pseudopolymorphs of DA-5018 and the transformation of crystal forms. Eight crystal forms of DA-5018 have been isolated by recrystallization and characterized by powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). The PXRD and DSC patterns of the eight crystal forms were different respectively. In the dissolution studies in simulated intestinal fluid at 37±0.5°C, the solubility of Form 2 was the highest. And the solubility in water decreased in rank order: Form 2>Form 3>Form 1>Form 5>Form 7>Form 4>Form 6>Form 8. Eight crystal forms were shown to have a good physical stability at room temperature for 60 days.  相似文献   

5.

The aim of this work was to search for new polymorphic forms of febantel, an anthelminthic drug of great present interest for the veterinary industry. Solvent-based recrystallization, thermal and mechanical treatments and spray drying were chosen to discover new solid forms. The solids obtained were physicochemically characterized by thermal techniques (DSC and TG), FTIR spectroscopy, laboratory and synchrotron X-ray powder diffraction and scanning electron microscopy. Our work leads to obtain a new solid form never described in the literature. In particular, the new polymorph was obtained by the anti-solvent method and the crystallization from isopropanol. The experimental conditions of crystallization favorable to the formation of the highest amount of the new solid phase were selected. The new phase shows a thermal, spectroscopic and diffractometric behavior unique. Furthermore, the preliminary structure investigation suggests two possible crystal systems: an orthorhombic or a monoclinic one, with really comparable lattice parameters and cell volume. Measurements put into evidence that the new phase is a metastable polymorph that is in monotropic relationship with the stable and known form.

  相似文献   

6.
The determination of the phase diagram of the binary system sodium perchlorate – water is reported. Beside the eutectic point, two polymorph crystal structures of sodium perchlorate dihydrate were determined. The two crystal structures are discussed, compared to each other and to other known sodiumhalide dihydrate crystal structures. The two polymorphs of the perchlorate dihydrate represent the two variants of connected octahedra in the layer structure found for sodium halide dihydrates.  相似文献   

7.
Cross-nucleation between polymorphs is a newly discovered phenomenon important for understanding and controlling crystal polymorphism. It contradicts Ostwald's law of stages and other theories of crystallization in polymorphic systems. We studied the phenomenon in the spontaneous and seeded melt crystallization of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY), currently the most polymorphic system of known structures. We observed extensive and sometimes selective cross-nucleation between ROY polymorphs. Certain polymorphs could not nucleate without the aid of others. The new polymorph was found to be more or less thermodynamically stable than the initial one but to always grow faster than or as fast as the initial one. The temperature and surface characteristics of the seed crystals affected the occurrence of cross-nucleation. Our results show that the pathway of crystallization in polymorphic systems is not determined solely by the initial nucleation, but also by cross-nucleation between polymorphs and the different growth rates of polymorphs. This study identified a new metastable polymorph of ROY, the 10th of the family.  相似文献   

8.
The remarkable, vapor-induced transformation of the yellow polymorphs of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) and [(C(6)H(11)NC)(2)Au(I)](PF(6)) into the colorless forms are reported along with related studies of the crystallization of these polymorphs. Although the interconversion of these polymorphs is produced by vapor exposure, molecules of the vapor are not incorporated into the crystals. Thus, our observations may have broad implications regarding the formation and persistence of other crystal polymorphs where issues of stability and reproducibility of formation exist. Crystallographic studies show that the colorless polymorphs, which display blue luminescence, are isostructural and consist of linear chains of gold(I) cations that self-associate through aurophilic interactions. Significantly, the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) is not isostructural with the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](PF(6)). Both yellow polymorphs exhibit green emission and have the gold cations arranged into somewhat bent chains with significantly closer Au···Au separations than are seen in the colorless counterparts. Luminescence differences in these polymorphs clearly enhance the ability to detect and monitor their phase stability.  相似文献   

9.
This work describes the use of UV/visible spectroscopy and calorimetry to follow the onset of crystallization of a commercially available compound, N(1)-2-(thiazolyl)sulfanilamide (sulfathiazole), during crystallization reactions performed using an automated reaction platform. Sulfathiazole has been the subject of numerous publications through which considerable confusion about the morphic form is apparent. This work does not attempt to investigate exhaustively the polymorph issue, but rather to exploit the use of the HEL auto-MATE for monitoring the onset of crystal formation. Real-time calorimetry and UV-Vis spectroscopy are compared as tools for determining the onset of crystallization. Subsequently, differential scanning calorimetry, dispersive Raman, and infrared spectroscopy analysis serve to identify the crystal forms generated by the HEL auto-MATE. A solvent-anti-solvent matrix and several bench-top crystallization experiments were performed to supplement the investigation in terms of generating the desired polymorphs.  相似文献   

10.
《Liquid crystals》1999,26(7):1067-1078
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

11.
The phase behaviour of the discotic mesogen 5,10,15,20-tetrakis(4-n -dodecylphenyl)porphyrin (C12TPP) was investigated under hydrostatic pressures up to 300MPa by high pressure DTA and wide angle X-ray diffraction methods. The typical enantiotropic phase transitions of C12TPP, low- to high-temperature crystal (Cr2-Cr1), Cr1-discotic lamellar phase (DL), and DL-isotropic liquid (I) are observed at pressures up to 10MPa. Application of hydrostatic pressure to the sample generates a pressure-induced crystal polymorph (Cr3) between the Cr2 and Cr1 phases, and the phase transitions Cr2-Cr3-Cr1-DL-I occur reversibly in the pressure region between 10 and 180MPa. On heating at higher pressures above 180MPa, the fourth crystal polymorph (Cr4) is formed between the Cr2 and Cr3 phases at lower temperatures, and at the same time the fifth crystal polymorph (Cr5) appears abruptly between the Cr1 and DL phases at high temperatures. The Cr2-Cr4-Cr3-C1-(Cr5)-DL-I transition processes were observed at 180 200MPa. Further increasing the pressure above 270MPa induces entirely different thermal behaviour: only two peaks for the pressure-induced transition between the sixth and fifth polymorphs (Cr6-Cr5) and the Cr5-I transitions are detected at low and high temperatures on heating, while both the DTA and WAXD experiments on cooling show the formation of the DL phase as a monotropic phase between the I and Cr5 phases, indicating the I DL Cr5 Cr6 process. The thermal behaviour was ambiguous and complex in the pressure region between 200 and 260MPa because the peaks for the intermediate crystal transitions were too small to detect with confidence. The two different sequences of the Cr2-Cr4-Cr3-Cr1-DL-I and Cr6-Cr5-(DL)-I processes seems to occur competitively. The T vs. P phase diagram of a sample cooled at 300MPa was studied to determine the triple point of the DL phase and to investigate the phase stability of the pressure-induced crystal polymorphs. The Cr6-Cr5-I transition process was observed on heating at 200 and 300MPa, while the Cr6-Cr5-DL-I process was detected at lower pressures below 100MPa. Since the Cr5-DL transition temperature changes linearly with a slope dT/dP 40 degrees C/100 MPa, while the DL-I transition temperature changes slightly (dT/dP 5.5 degrees C/100MPa), the DL phase forms a triangle in the T vs. P diagram. The triple point of the DL phase was found to be 240.8MPa and 168.8 C. The Cr6 polymorph reorganized to the stable Cr2 form under atmospheric pressure on annealing at room temperature overnight.  相似文献   

12.
Synthetic paths toward the two polymorphs of a monohydrate, one anhydrous polymorph of 1-carboxamidino-5-hydroxy-3-methylpyrazole (hcmp) and two polymorphs of zinc complexes containing hcmp ligand are presented. By choosing ions which are not part of the final product, it is possible to direct the synthesis toward the particular polymorph. In all three modifications of hcmp, the same hydrogen bonding motif appears, leading to formation of similar molecular chains. Differences arise due to different modes of chain aggregation and the presence of solvent water. Analysis of the crystal packing and the energetic features of hcmp polymorphs is made using the PIXEL model. The thermal decomposition processes are examined using differential scanning calorimetry and thermogravimetry. Analysis of crystal packing in the two polymorphs of zinc complex suggests the key role of the hydrogen bonding capacity of the aqua ligand for the appearance of the two polymorphic forms. In both polymorphs of zinc complex, stacking interactions have an important role. However, the enhanced hydrogen bonding capacity of the aqua ligand influences the formation of multistacking arrangement.  相似文献   

13.
The physico-chemical properties and polymorphism of a new active pharmaceutical ingredient entity has been analyzed and the gain of knowledge during the chemical development of the substance is described. Initial crystallization revealed an anhydrous crystal form with good crystallinity and a single, sharp DSC melting peak at 171°C and a straightforward development of this crystal form seemed possible. However, during polymorphism screening, new crystalline forms were detected that were often analyzed as mixtures of crystal forms. The process of characterization and identification of the different crystalline forms and its thermodynamical relationship has been supported by a combination of experimental and computational work including determination of the three-dimensional structures of the crystal forms. The crystal structure of one polymorphic form was solved by single crystal X-ray structure analysis. Unfortunately, Mod B resisted in formation of suitable single crystals, but its structure could be solved by high resolution powder diffraction data analysis using synchrotron radiation. Calculation of the theoretical X-ray powder diffraction pattern from three dimensional crystal coordinates allowed an unambiguous identification of the different crystalline forms. Two polymorphic crystal forms of the API-CG3, named Mod A and Mod B, are enantiotropic whereas Mod B is the most stable polymorph at room temperature up to about 50°C and Mod A at temperatures above 50°C. The mechanism of the solid-solid transition can be explained by analyzing the molecular packing information gained from the single crystal structures. A third crystalline form with the highest melting peak turned out to be not a polymorphic or pseudopolymorphic crystal modification of our API-CG3 but a chemically different substance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We report the luminescent color tuning of a new complex, 2‐benzothiophenyl(4‐methoxyphenyl isocyanide)gold(I) ( 1 ), by using a new “polymorph doping” approach. The slow crystallization of the complex 1 afforded three different pure polymorphic crystals with blue, green, and orange emission under UV‐light irradiation. The crystal structures of pure polymorphs of 1 were investigated in detail by means of single‐crystal X‐ray analyses. Theoretical calculations based on the single‐crystal structures provided qualitative explanation of the difference in the excited energy‐levels of the three polymorphs of 1 . In sharp contrast, the rapid precipitation of 1 , with the optimized conditions reproducibly afforded homogeneous powder materials showing solid‐state white‐emission with Commission Internationale de l’Éclairage (CIE) 1931 chromaticity coordinates of (0.33, 0.35), which is similar to pure white. New “polymorphic doping” has been revealed to be critical to this white emission through spectroscopic and X‐ray diffraction analyses. The coexistence of the multiple polymorphs of 1 within the homogeneous powder materials and the ideal mixing of multiple luminescent colors gave its white emission accompanied with energy transfer from the predominant green‐emitting polymorph to the minor orange‐emitting polymorph.  相似文献   

15.
Guanidinium ethoxysulfonate, [C(NH2)3]+[C2H5O-SO3]-, was synthesized, and two polymorphs, both stable at normal conditions, were grown from an aqueous solution by only a slight change in the crystallization temperature. The nonpolar polymorph I is built of hydrogen-bonded bilayers, while the ferroelectric polymorph II consists of single-layers. The diversity in the crystals' architecture and properties originates from the excessive number of proton-acceptor sites. At 298 K, the structure of polymorph I is orthorhombic, space group Pbam, formed of supramolecular hydrogen-bonded sheets. Within such a sheet, the ethoxysulfonate anions assume alternately cis and trans conformations, both disordered at room temperature and at 150 K. The anisotropy of the crystal structure is mirrored by a strong anisotropy of its thermal expansion. Upon cooling at 120 K, the crystal undergoes a first-order order-disorder phase transition. The structure of polymorph II is also reinforced by the two-dimensional network of NH...O hydrogen bonds, but the supramolecular motif formed is different from that of polymorph I. The H-bonded strongly corrugated sheets are stacked, forming a densely packed single-layer structure. All the anions assume the same trans conformation. At 298 K, they are disordered between the two sites related by the mirror symmetry plane. The onset of ordering of the anions coincides with the Curie point at TC = 211 K, at which the dielectric constant exceeds 4000. The continuous paraelectric-ferroelectric phase transition is associated with the symmetry change Pnma --> Pna21. Despite the apparent order-disorder character of the transition, the transition mechanism also involves a substantial displacement of the ions and a rearrangement of the H-bonded network.  相似文献   

16.
Crystal nucleation is important for many processes including pharmaceutical crystallization, biomineralization, and material synthesis. The progression of structural changes which occur during crystal nucleation are often described using order parameters. Polymorph specific order parameters have been developed for crystallization of spherically symmetric particles; however, polymorph specific order parameters for molecular crystals remain a challenge. We introduce template based polymorph specific order parameters for molecular crystals. For each molecule in a simulation, we compute the root mean squared deviation (RMSD) between the local environment around the molecule and a template of the perfect crystal structure for each polymorph. The RMSD order parameters can clearly distinguish the α-, β-, and γ-glycine polymorph crystal structures in the bulk crystal and also in solvated crystallites. Surface melting of glycine crystallites in supersaturated aqueous solution is explored using the newly developed order parameters. The solvated α-glycine crystallite has a thinner surface melted layer than the γ-glycine crystallite. α-glycine forms first out of aqueous solution, so surface melted layer thickness may provide insight into interfacial energy and polymorph selection.  相似文献   

17.
Transition metal nitride halides MNX (M = Zr, Hf; X = Cl, Br, I) have two types of layer structured polymorphs, the alpha-form with the FeOCl type and the beta-form with the SmSI type. Both polymorphs consist of corrugated double M-N layers sandwiched between halogen layers, but with different atomic arrangements within the layers. The beta-form had been considered to be a high-temperature polymorph, because some beta-forms were obtained by thermal treatment of the corresponding alpha-forms. Here, the alpha-form was successfully transformed into the beta-form under high-pressure and high-temperature conditions; the new members of the beta-form were prepared for the first time from alpha-HfNBr, alpha-ZrNI, and alpha-HfNI using a high pressure of 3-5 GPa at 900 degrees C. The beta-form should be characterized as the high-pressure form rather than the corresponding high-temperature polymorph. This is the first high-pressure study on the polymorphs of metal nitride systems.  相似文献   

18.
The discovery and selective production of crystalline polymorphs, an outstanding problem in solid-state chemistry, is of great importance industrially in, for example, the manufacture of pharmaceuticals and pigments. Despite considerable efforts, no reliable method exists to produce all of the stable polymorphs of a given compound. Herein, we report methodology to control the phenomenon of crystal polymorphism through the use of diverse libraries of polymer heteronuclei including both commercially available polymers and combinatorially synthesized cross-linked polymers. This new approach for exploring polymorph space offers the advantage of high throughput crystallization to discover multiple polymorphs combined with the ability to selectively produce a given form from a single solvent and temperature condition by simply varying the nature of the polymer substrate. This technique is successfully demonstrated on the pharmaceuticals acetaminophen, sulfamethoxazole, and carbamazepine and on the pharmaceutical intermediate 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY). High throughput screening, accomplished by optical microscopy and Raman spectroscopy, identified the selective production of the two stable polymorphs of acetaminophen and all six stable forms of ROY. Furthermore, one new form of carbamazepine and two new forms of sulfamethoxazole were discovered; in these cases, single crystals were obtained enabling the structural characterization of two new tetramorphic systems.  相似文献   

19.
Although nanoporous materials have been explored for controlling crystallization of polymorphs in recent years, polymorphism in confined environments is still poorly understood, particularly from a kinetic perspective, and the role of the local structure of the substrate has largely been neglected. Herein, we report the use of a novel material, polymer microgels with tunable microstructure, for controlling polymorph crystallization from solution and for investigating systematically the effects of nanoconfinement and interfacial interactions on polymorphic outcomes. We show that the polymer microgels can improve polymorph selectivity significantly. The polymorphic outcomes correlate strongly with the gel-induced nucleation kinetics and are very sensitive to both the polymer microstructure and the chemical composition. Further mechanistic investigations suggest that the nucleation-templating effect and the spatial confinement imposed by the polymer network may be central to achieving polymorph selectivity. We demonstrate polymer microgels as promising materials for controlling crystal polymorphism. Moreover, our results help advance the fundamental understanding of polymorph crystallization at complex interfaces, particularly in confined environments.  相似文献   

20.
DA-6034 is a new synthetic flavonoid known to possess anti-inflammatory activity. The objective of this work was to investigate the existence of polymorphs and pseudopolymorphs of DA-6034. Six crystal forms, one hydrate form and five solvates, of DA-6034 have been isolated by recrystallization and characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and powder X-ray diffractometry (PXRD). From the DSC and TG data it was confirmed that Form 1 is monohydrate; Form 2 is DMSO solvate; Form 3 is 1/2 DMSO solvate; Form 4 is 1/2 methyl ethyl ketone solvate; Form 5 is 1.5 H2O, 1/2 acetic acid solvate; Form 6 is 1/2 H2O, 1/4 butanol solvate. The PXRD patterns of the six crystal forms were different respectively. In the dissolution studies in pH 6.8 ± 0.05 buffer at 37 ± 0.5 °C, the solubility of solvates was higher than that of Form 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号