首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first nuclear magnetic resonance (NMR) experiments in pulsed field magnets at fields up to 58 T are reported. The basic features of the pulsed field source and the strategy to observe the first spectra are described. A2H NMR spectrum at 58 T is shown and the first results are discussed.  相似文献   

2.
Metastable magnetic textures are created in 3He-A using pulsed NMR and subsequent frequency shifts are analyzed. The results are consistent with a model for splay composite solitons, assuming the NMR pulse produces these solitons at a high density.  相似文献   

3.
The resonance magnetic coupling between the nuclei of liquid 3He and the 141Pr nuclei of a fine-dispersed powder of PrF3 Van Vleck paramagnet with the grain size below 45 μm has been discovered at a temperature of 1.5 K with the use of a pulsed NMR technique. The magnetic specific heat of the corresponding spin systems is estimated theoretically.  相似文献   

4.
The pulsed electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (NMR) technique has been applied to the investigation of the hyperfine structure of the oxidized radical of YD tyrosine (Y D · ) and Mn2+ ion bound to the high-affinity site in photosystem II. The resulting ELDOR spectrum of Y D · was found to correspond with the pulsed electron-nuclear double resonance (ENDOR) spectrum except for a slightly larger linewidth (by a factor of 1.7). The spectrum showed marked anisotropy and revealed three peaks which can be assigned to matrix protons, C-3 and ?5 protons and one of the β-protons in the tyrosine molecule. The results demonstrate that the pulsed ELDOR-detected NMR technique is applicable to the study of organic radicals in biological systems. The Mn2+ ion bound to the high-affinity site in photosystem II yielded well-resolved ELDOR signals spreading over ±1000 MHz. The magnetic properties of the Mn2+ were characterized on the basis of the calculation of the ENDOR transitions and the anisotropy of the ELDOR spectrum.  相似文献   

5.
The motion of the flux lines (FL) in high temperature superconductors and their relationship with the NMR quantities are reviewed and discussed in the light of recent89Y NMR experiments in YBCO-type compounds. In particular measurements involving the89Y spin echo attenuation induced both by the thermal excitation of the FL’s and by motions driven by DC current and pulsed magnetic fields are presented, with preliminary results and lines of interpretation. Flux line motion as observed with199Hg NMR in HgBa2CuO4+δ high temperature superconductor is discussed.  相似文献   

6.
The magnetic phase diagram of amorphous Ni80? x Fe x B16Si4 was studied by de-magnetization measurement, by57Fe-Mössbauer spectroscopy and pulsed spin echo NMR.  相似文献   

7.
The spin kinetics of liquid 3He in contact with a mixture of LaF3 (99.67%) and DyF3 (0.33%) micropowders at temperatures of 1.5–3 K has been studied by pulsed nuclear magnetic resonance (NMR). The DyF3 is a dipolar dielectric ferromagnet with the phase transition temperature Tc= 2.55 K, whereas the diamagnetic fluoride LaF3 is a diluting substance for the optimal observation conditions of 3Не NMR in powder pores. The magnetic phase transition in DyF3 is accompanied by a considerable change in the character of fluctuations of the magnetic moments of dysprosium ions, which affect the spin kinetics of 3Не in contact with the substrate. Significant changes in the relaxations rates of the longitudinal and transverse magnetizations of 3Не have been discovered in the region of magnetic ordering of the solid matrix. The technique of studying the static and fluctuating magnetic fields of a solid matrix at low temperatures using liquid 3He as a probe has been proposed.  相似文献   

8.
The effects of the 57Fe isotope content and high-frequency magnetic field amplitude h 1 on the shape of the NMR spectrum of multiferroic BiFeO3 at T = 4.2 K are studied by pulsed nuclear magnetic resonance. The NMR spectrum shape and transverse relaxation time T 2 are found to depend strongly on the 57Fe isotope content and h 1 in multiferroic BiFeO3 in the presence of a spatial spin-modulated structure of a cycloid type. In a sample with a high 57Fe isotope content, the Suhl-Nakamura interaction contributes substantially to T 2. When these dynamic effects are taken into account for analysis of the NMR spectrum shape, an undisturbed (without an anharmonicity effect) spatial spin-modulated structure of a cycloid type is shown to exist in BiFeO3.  相似文献   

9.
《Current Applied Physics》2014,14(3):383-388
The magnetic properties and the electronic structures of a rare-earth aluminum intermetallic compound CeAl2 are investigated by magnetic susceptibility measurements and 27Al pulsed nuclear magnetic resonance (NMR) techniques. The magnetic susceptibility is strongly temperature-dependent, following a Curie–Weiss law down to ∼12 K, and shows an antiferromagnetic transition at 4 K. The 27Al NMR spectra show a typical powder pattern for a nuclear spin I of 5/2 with the second-order nuclear quadrupole interaction at high temperature and an additional large dipolar broadening between the 4f electron spins of cerium and the 27Al nuclear spins at low temperature. The 27Al NMR Knight shift follows the same temperature dependence as the magnetic susceptibility, suggesting that the 27Al NMR Knight shift originates from the transferred hyperfine field of the Ce 4f electron spins with the hyperfine coupling constant of A = +5.7 kOe/μB. The spin-lattice relaxation rate 1/T1 is roughly proportional to temperature, as with most non-magnetic metals at high temperature, and then strongly temperature-dependent, increasing rapidly with a peak near the antiferromagnetic transition temperature and decreasing at lower temperature. The temperature dependence of the Korringa ratio K, however, suggests that the antiferromagnetic spin fluctuation signature, which is an enhancement in the Korringa ratio, is washed out owing to the geometrical cancellation of Ce 4f fluctuations at the Al sites.  相似文献   

10.
The pulsed NMR method is applied to an analysis of a complicated structure of inhomogeneous internal fields in a ferromagnetic crystal. Proton magnetic resonance in the Ising ferromagnet TbES at a temperature range from 1.6 K down to 35 mK is studied at frequencies of 10–35 MHz. A complicated picture of static and fluctuating internal magnetic fields in the crystal is presented. Interatomic distances are shown to have an uncertainty of the order of 0.2% due to defects in the crystal lattice. The fluctuations of internal magnetic fields produced by thermal excitation and spin-spin relaxation of Tb3+ ions give rise to the effective nuclear magnetic relaxation: 1/T1(2)~exp (δ/kT), where δ is the energy splitting of the lowest Tb3+ quasi-doublet. The rate of these fluctuations in TbES at low temperatures is approximately equal to 2×107 s?1 being independent of temperature and magnetic field.  相似文献   

11.
A new method has been developed for measuring the magnitude of nuclear spin polarization of a secondary, radioactive beam by making a pulsed magnetic field measurement that does not require advance knowledge of the nuclide's magnetic moment. Using a standard β NMR apparatus, a magnetic double ratio is determined from the counting rates in 0° and 180° β detectors for magnetic field on and off conditions. This ratio provides direct information on the induced spin polarization of a radioactive beam. A demonstration of the method was performed using spin polarized 12B nuclei produced by fragmentation of an 80 MeV/nucleon 18O beam in a Nb target. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The impurity and lattice contributions to the spin-lattice relaxation of Al27 nuclei in nominally pure and lightly chromium-doped corundum (Al2O3) crystals are separated experimentally under the conditions of additional stationary resonance magnetic saturation of a pulsed NMR signal. The relaxation time T i lat due to the lattice mechanism of the spin-phonon interaction is determined. Fiz. Tverd. Tela (St. Petersburg) 39, 1041–1043 (June 1997)  相似文献   

13.
Spin–lattice relaxation of 3Не in contact with the ordered Al2O3 fiber aerogel has been studied at the temperature of 1.6 K in fields of 0.1–0.5 T by the pulsed nuclear magnetic resonance (NMR) method. An additional mechanism of the relaxation of 3Не in aerogels is found and it is shown that this relaxation mechanism is not associated with the adsorbed layer. A hypothesis about the influence of intrinsic paramagnetic centers on the relaxation of gaseous 3Не is proposed.  相似文献   

14.
The mixed compound (CH3NH3)2Cu(Cl0.1Br0.9)4 which has random bonds of ferromagnetic and antiferromagnetic interactions has been investigated by the pulsed NMR of 1H, 63,65Cu and 79,81Br. The temperature dependence of the line width of 1H showed the existence of the magnetic phase transition at 15 K in the applied field of 4 kOe. The moments of Cu2+ have been shown to lie within the c-plane and have some randomness from the field dependence of the NMR spectrum and the spin-echo decay time of the copper and the bromine nuclei.  相似文献   

15.
Amorphous and microcrystalline Fe-B alloys (4–25 at % B) obtained by rapid quenching of the melt were studied using the pulsed nuclear magnetic resonance (NMR) of 11B nuclei at 4.2 K. Alloy samples were prepared from both a natural isotope mixture and a mixture of the 56Fe and 11B isotopes. The NMR spectra were measured as a function of the boron content. The maximum hyperfine fields at the 11B nuclei sites are 25–29 kOe and overlap the values of the hyperfine fields at the 11B nuclei sites in the tetragonal and orthorhombic Fe3B phases and also in the α-Fe phase containing boron as a substitutional impurity. The short-range order and local atomic structure of the amorphous Fe-B alloys were determined. The amorphous alloys are found to consist of microregions (clusters) with a short-range order similar to that in the tetragonal or orthorhombic Fe3B phase or the α-Fe phase.  相似文献   

16.
Laser optical pumping in low magnetic field provides very high nuclear polarizations in gaseous helium mixtures, and is used to prepare polarized liquid. Wall relaxation in glass cells is effiently reduced using cesium coatings, and bulk longitudinal relaxation times are measured. In highly magnetized samples, dipolar fields control the spin dynamics in anisotropic volumes and weak external magnetic field inhomogeneities. Long lived magnetostatic modes are observed by pulsed NMR. Detailed analysis of their frequency and damping gives information on magnetization density and spin diffusion coefficient in polarized mixtures. Experiments are performed above 0.2 K on mixtures with3He concentrations of order a few percents or larger. When phase separation occurs, the3He-rich phase retains a high polarization.  相似文献   

17.
The combined application of two-dimensional nuclear magnetic resonance (2-D NMR) correlation experiments and gauge-including atomic orbital (GIAO) 13C NMR chemical shift calculations allowed reliable and simple determination of regioisomeric structure of heterocyclic substituents on the calix[4]arene lower rim. Moreover, the 1-D double pulsed field gradient nuclear Overhauser effect technique allows quick and efficient measurement of small nuclear Overhauser effects and, in doing so, establishes a 3-D structure of calix[4]arene simply and unequivocally. In general, these methods may find application in the regio- and stereoisomeric structure determination of complicated macrocyclic compounds.  相似文献   

18.
A short historical review is given on internal field NMR of ferromagnets, illustrated with recent pulsed NMR spectra of the elemental ferromagnets Fe, Co and Ni and the Fe-oxides magnetite, maghemite and hematite, which, with the exception of maghemite, have resonance frequencies first reported over 45 years ago. Since the magnetic hyperfine field at the nucleus is not known a priori, the original search frequency motivations are discussed along with the mechanisms for the initially much larger than expected (~103) NMR signals that were observed. The 57Fe spectra of the three principal Fe-oxide ferromagnets, magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), obtained here under uniform spectroscopic conditions, are then discussed in more detail, with a focus on the influence of particle size and vacancy content on the hyperfine fields  相似文献   

19.
A metastable mode of 3HeA has been observed using pulsed NMR techniques. The frequency of the mode is related to the previous cw NMR observation of a transverse satellite resonance.  相似文献   

20.
A room temperature nuclear magnetic resonance force microscope (MRFM), fitted in a 1 tesla electromagnet, has been used to measure the nuclear spin relaxation of 1H in a micron-size (70 ng) crystal of ammonium sulfate. NMR sequences, combining both pulsed and continuous wave radio-frequency fields, have allowed us to measure mechanically T2 and T1, the transverse and longitudinal spin relaxation times. Because two spin species with different T1 values are measured in our 7 μm thick crystal, magnetic resonance imaging of their spatial distribution inside the sample section have been performed. To understand quantitatively the measured signal, we carefully study the influence of spin-lattice relaxation and non-adiabaticity of the continuous-wave sequence on the intensity and time dependence of the detected signal. Received 23 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号