首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用磁控三靶(Si,Sb及Te)共溅射法制备了Si掺杂Sb2Te3薄膜,作为对比,制备了Ge2Sb2Te5和Sb2Te3薄膜,并且采用微加工工艺制备了单元尺寸为10μm×10μm的存储器件原型来研究器件性能.研究表明,Si掺杂提高了Sb2Te3薄膜的晶化温度以及薄膜的晶态和非晶态电阻率,使得其非晶态与晶态电阻率之比达到106,提高了器件的电阻开/关比;同Ge2Sb2Te5薄膜相比,16at% Si掺杂Sb2Te3薄膜具有较低的熔点和更高的晶态电阻率,这有利于降低器件的RESET电流.研究还表明,采用16at% Si掺杂Sb2Te3薄膜作为存储介质的存储器器件原型具有记忆开关特性,可以在脉高3V、脉宽500ns的电脉冲下实现SET操作,在脉高4V、脉宽20ns的电脉冲下实现RESET操作,并能实现反复写/擦,而采用Ge2Sb2Te5薄膜的相同结构的器件不能实现RESET操作. 关键词: 相变存储器 硫系化合物 2Te3薄膜')" href="#">Si掺杂Sb2Te3薄膜 SET/RESET转变  相似文献   

2.
The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional experiments. Isotropic shearing is usually applied along the indirect dimension of the 2D spectra such that an isotropic projection free of anisotropic quadrupolar broadening can be obtained. An alternative shear transformation by a factor equal to the coherence level (quantum number) selected during the evolution period is proposed. Such a transformation eliminates chemical shift along the indirect dimension leaving only the second-order quadrupolar-induced shift and anisotropic broadening, and is expected to be particularly useful for disordered systems. This transformation, dubbed Q-shearing, can help avoid aliasing problems due to large chemical shift ranges and spinning sidebands. It can also be used as an intermediate step to the isotropic representation for expanding the spectral window of rotor-synchronized experiments.  相似文献   

3.
采用射频磁控溅射方法制备了两种用于相变存储器的Ge1Sb2Te4和Ge2Sb2Te5相变薄膜材料,对其结构、电学输运性质和恒温下电阻随时间的变化关系进行了比较和分析.X射线衍射(XRD)和原子力显微镜(AFM)的结果表明:随着退火温度的升高,Ge1Sb2Te4薄膜逐步晶化,由非晶态转变为多晶态,表面出现均匀的、 关键词: 硫系相变材料 1Sb2Te4')" href="#">Ge1Sb2Te4 2Sb2Te5')" href="#">Ge2Sb2Te5  相似文献   

4.
Fast right-angle sample spinning (RAS) with rotation frequencies up to 17 kHz at temperatures down to 205 K is applied to electron paramagnetic resonance (EPR) experiments on organic radicals. Echo-detected RAS EPR provides substantial resolution enhancements for the range of anisotropies between 10 and 100 MHz which is not accessible with either magic-angle sample spinning EPR or anisotropy-resolved EPR on the basis of slow rotation. The larger reorientation angles in experiments with fast spinning cause strong phase shifts of the echo, which manifest themselves as regions with negative intensity in the spectrum. These phase shifts and thus the lineshape in echo-detected RAS EPR depend significantly on the relative orientation of theg and hyperfine tensor. For the determination of anisotropies in poorly resolved spectra of organic radicals in disordered solids, we introduce the two-dimensional fixed-angle rotation experiment as an alternative to anisotropy-resolved EPR.  相似文献   

5.
张帆  朱航天  骆军  梁敬魁  饶光辉  刘泉林 《物理学报》2010,59(10):7232-7238
以室温热电性能优异的传统热电材料Sb2Te3为研究对象,利用化学气相沉积法制备Sb2Te3单晶纳米结构,并研究其生长机理.实验结果表明,不加催化剂时Sb2Te3易生长成六方纳米盘,在金催化剂条件下定向生长成纳米线.Sb2Te3的形貌与其晶体结构和生长机理有关.Sb2Te3为三角结构,Sb和  相似文献   

6.
The electrochemical behaviors of BiIII, TeIV and SbIII single ions and their mixtures were investigated in nitric acid and hydrochloric acid system separately. Based on which, BixSb2−xTey thermoelectric films were prepared by potentiostatic electrodeposition from the solutions with different concentrations of BiIII, TeIV and SbIII in the two acid systems. The morphologies, compositions, structures, Seebeck coefficients and resistivities of the deposited thin films were characterized and compared by ESEM (or FESEM), EDS, XRD, Seebeck coefficient measurement system and four-probe resistivity measuring device respectively. The results show that although BixSb2−xTey thermoelectric thin film which structure is consistent with the standard pattern of Bi0.5Sb1.5Te3 can be gained in both of the two acid solutions by adjusting the deposition potential, their morphologies and thermoelectric properties have big differences in different acid solutions.  相似文献   

7.
An experimental comparison of sensitivity and resolution of satellite transition (ST) MAS and multiple quantum (MQ) MAS was performed for 27Al (I = 5/2) using several pulse sequences with a z-filter and SPAM, and two inorganic samples of kaolin (Al2Si2O5(OH)4) and glass (43.1CaO–12.5Al2O3–44.4SiO2). Six pulse sequences of STMAS (double-quantum filter-soft pulse added mixing = DQF-SPAM, double-quantum filter = DQF, double-quantum = DQ) and MQMAS (3QMAS-z-filter = 3Qz, 3QMAS-SPAM = 3Q-SPAM, 5QMAS-z-filter = 5Qz) are employed. All experiments have been conducted utilizing a static field of 16.4 T (700 MHz for 1H) and a rotor spinning frequency of 20 kHz. Dependence of S/N ratios as a function of radio frequency (r.f.) field strengths indicates that strong r.f. fields are essential to obtain a better S/N ratio in all experiments. High sensitivity is obtained in the following order: DQF-SPAM, DQF, DQ, 3QSPAM, and 3Qz, although the degree of sensitivity enhancement given by STMAS for glass is slightly smaller than that for kaolin. This might be due to the different excitation and conversion efficiencies of ST and MQ coherences as a function Cq values because quadrupolar interaction of the glass are widely distributed, or to motional broadening caused by framework flexibility in the structure of glass. With respect to resolution, the full widths at half maximum (FWHM) of F1 projections of DQF-STMAS and 3QMAS spectra for kaolin are found to be comparable, which agrees with a simulated result reported in a literature. For glass, the STMAS possess slightly wider line widths than 3QMAS. However, because such a difference in line widths of STMAS and 3QMAS spectra is substantially small, we have concluded that STMAS and 3QMAS have comparable resolution for crystalline and non-crystalline materials.  相似文献   

8.
We compare 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra from the two modifications of silicon nitride, α-Si3N4 and β-Si3N4, with that of a fully (29Si, 15N)-enriched sample 29Si315N4, as well as 15N NMR spectra of Si315N4 (having 29Si at natural abundance) and 29Si315N4. We show that the 15N NMR peak-widths from the latter are dominated by J(29Si–15N) through-bond interactions, leading to significantly broader NMR signals compared to those of Si315N4. By fitting calculated 29Si NMR spectra to experimental ones, we obtained an estimated coupling constant J(29Si–15N) of 20 Hz. We provide 29Si spin-lattice (T1) relaxation data for the 29Si315N4 sample and chemical shift anisotropy results for the 29Si site of β-Si3N4. Various factors potentially contributing to the 29Si and 15N NMR peak-widths of the various silicon nitride specimens are discussed. We also provide powder X-ray diffraction (XRD) and mass spectrometry data of the samples.  相似文献   

9.
Al doped Sb2Te3 material was proposed to improve the performance of phase-change memory. Crystallization temperature, activation energy, and electrical resistance of the Al doped Sb2Te3 films increase markedly with the increasing of Al concentration. The additional Al-Sb and Al-Te bonds enhance the amorphous thermal stability of the material. Al0.69Sb2Te3 material has a better data retention (10 years at 110 °C) than that of Ge2Sb2Te5 material (10 years at 87 °C). With a 100 ns width voltage pulse, SET and RESET voltages of 1.3 and 3.3 V are achieved for the Al0.69Sb2Te3 based device.  相似文献   

10.
Ge2Sb2Te5 is a famous phase-change memory material for rewriteable optical storage, which is widely applied in the information storage field. The stable trigonal phase of Ge2Sb2Te5 shows potential as a thermoelectric material as well, due to its tunable electrical transport properties and low lattice thermal conductivity. In this work, the carrier concentration and effective mass of Ge2Sb2Te5 are modulated by substituting Te with Se. Meanwhile, the thermal conductivity reduces from 2.48 W m−1 K−1 for Ge2Sb2Te5 to 1.37 W m−1 K−1 for Ge2Sb2Te3.5Se1.5 at 703 K. Therefore, the thermoelectric figure of merit zT increases from 0.24 for Ge2Sb2Te5 to 0.41 for Ge2Sb2Te3.5Se1.5 at 703 K. This study reveals that Se alloying is an effective way to enhance the thermoelectric properties of Ge2Sb2Te5.  相似文献   

11.
Elucidating the local environment of the hydrogen atoms is an important problem in materials science. Because 1H spectra in solid-state nuclear magnetic resonance (NMR) suffer from low resolution due to homogeneous broadening, even under magic-angle spinning (MAS), information of chemical interest may only be obtained using certain high-resolution 1H MAS techniques. 1H Lee–Goldburg (LG) CRAMPS (Combined Rotation And Multiple-Pulse Spectroscopy) methods are particularly well suited for studying inorganic–organic hybrid materials, rich in 1H nuclei. However, setting up CRAMPS experiments is time-consuming and not entirely trivial, facts that have discouraged their widespread use by materials scientists. To change this status quo, here we describe and discuss some important aspects of the experimental implementation of CRAMPS techniques based on LG decoupling schemes, such as FSLG (Frequency Switched), and windowed and windowless PMLG (Phase Modulated). In particular, we discuss the influence on the quality of the 1H NMR spectra of the different parameters at play, for example LG (Lee–Goldburg) pulses, radio-frequency (rf) phase, frequency switching, and pulse imperfections, using glycine and adamantane as model compounds. The efficiency and robustness of the different LG-decoupling schemes is then illustrated on the following materials: organo-phosphorus ligand, N-(phosphonomethyl)iminodiacetic acid [H4pmida] [I], and inorganic–organic hybrid materials (C4H12N2)[Ge2(pmida)2OH2]·4H2O [II] and (C2H5NH3)[Ti(H1.5PO4)(PO4)]2·H2O [III].  相似文献   

12.
We show that for observing high-resolution heteronuclear NMR spectra of anisotropically mobile systems with order parameters less than 0.25, moderate magic-angle spinning (MAS) rates of 11 kHz combined with 1H decoupling at 1–2 kHz are sufficient. Broadband decoupling at this low 1H nutation frequency is achieved by composite pulse sequences such as WALTZ-16. We demonstrate this moderate MAS low-power decoupling technique on hydrated POPC lipid membranes, and show that 1 kHz 1H decoupling yields spectra with the same resolution and sensitivity as spectra measured under 50 kHz 1H decoupling when the same acquisition times (50 ms) are used, but the low-power decoupled spectra give higher resolution and sensitivity when longer acquisition times (>150 ms) are used, which are not possible with high-power decoupling. The limits of validity of this approach are explored for a range of spinning rates and molecular mobilities using more rigid membrane systems such as POPC/cholesterol mixed bilayers. Finally, we show 15N and 13C spectra of a uniaxially diffusing membrane peptide assembly, the influenza A M2 transmembrane domain, under 11 kHz MAS and 2 kHz 1H decoupling. The peptide 15N and 13C intensities at low-power decoupling are 70–80% of the high-power decoupled intensities. Therefore, it is possible to study anisotropically mobile lipids and membrane peptides using liquid-state NMR equipment, relatively large rotors, and moderate MAS frequencies.  相似文献   

13.
Microstructures and thermoelectric properties of Ge1Sb2Te4 and Ge2Sb2Te5 chalcogenide semiconductors have been investigated to explore the possibility of their thermoelectric applications. The phase transformation from the face-centered cubic to hexagonal structure was observed in Ge2Sb2Te5 compounds prepared by the melt spinning technique. The Seebeck coefficient and electrical resistivity of the alloys were increased due to the enhanced scattering of charge carriers at grain boundaries. The maximum power factors of the rapidly solidified Ge1Sb2Te4 and Ge2Sb2Te5 attained 0.975×10-3 W m-1K-2 at 750 K and 0.767×10-3 W m-1K-2 at 643 K respectively, higher than those of water quenched counterparts, implying that thermoelectric properties of GeSbTe based layered compounds can be improved by grain refinement. The present results show this class of chalcogenide semiconductors is promising for thermoelectric applications. PACS  84.60.Rb; 81.05.Hd; 72.20.Pa; 64.70.Kb; 61.66.Fn  相似文献   

14.
范平  蔡兆坤  郑壮豪  张东平  蔡兴民  陈天宝 《物理学报》2011,60(9):98402-098402
本文采用离子束溅射Bi/Te和Sb/Te二元复合靶,直接制备n型Bi2Te3热电薄膜和p型Sb2Te3热电薄膜.在退火时间同为1 h的条件下,对所制备的Bi2Te3薄膜和Sb2Te3薄膜进行不同温度的退火处理,并对其热电性能进行表征.结果表明,在退火温度为150 ℃时,制备的n型Bi2Te3关键词: 薄膜温差电池 2Te3薄膜')" href="#">Sb2Te3薄膜 2Te3薄膜')" href="#">Bi2Te3薄膜 离子束溅射  相似文献   

15.
The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based on powder X-ray diffraction combined with Rietveld analysis and with Taylor–Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra recorded at four magnetic fields (4.7–14.1 T) and this has led to an improved quantification of alite and belite from 29Si MAS NMR spectra recorded at “high” spinning speeds of νR=12.0–13.0 kHz using 4 or 5 mm rotors. Furthermore, the impact of Fe3+ ions on the spin-lattice relaxation was studied by inversion-recovery experiments and it was found that the relaxation is overwhelmingly dominated by the Fe3+ ions incorporated as guest-ions in alite and belite rather than the Fe3+ sites present in the intimately mixed ferrite phase (Ca2AlxFe2−xO5).  相似文献   

16.
Schemes such as phase-modulated Lee–Goldburg (PMLG) for homonuclear dipolar decoupling have been shown to yield high-resolution 1H spectra at high magic-angle spinning (MAS) frequencies of 50–70 kHz. This is at variance to the commonly held notion that these methods require MAS frequencies not comparable to the cycle frequencies of the pulse schemes. Here, a theoretical argument, based on bimodal Floquet theory, is presented to explain this aspect together with conditions where PMLG type of schemes may be successful at high MAS frequencies.  相似文献   

17.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

18.
采用磁控溅射法制备了不同Cu含量的Cu-Ge3Sb2Te5薄膜, 原位测试了薄膜电阻与温度的关系, 并利用X射线衍射仪、透射电镜、透过和拉曼光谱仪分别研究了 Cu-Ge3Sb2Te5薄膜的晶体结构、微结构、禁带宽度及成键情况. 结果表明, Cu-Ge3Sb2Te5薄膜的结晶温度和结晶活化能随着Cu含量的增加而增大, Cu的加入有效改善Ge3Sb2Te5薄膜的热稳定性和10年数据保持力. 随着Cu含量的增加, 非晶态Cu-Ge3Sb2Te5薄膜的禁带宽度逐渐减小. 同时, 拉曼峰从129 cm-1向127 cm-1处移动, 这是由于Cu–Te极性键振动增强的缘故. Cu-Ge3Sb2Te5结晶为均匀、相互嵌套的六方Cu2Te和Ge2Sb2Te5相.  相似文献   

19.
The effect of Sn atoms on the electrophysical properties and x-ray photoelectron spectra of Czochralski-grown Sb2Te3 single crystals is studied. The character of the temperature dependences of the kinetic coefficients is shown to depend noticeably on the structure of the valence band, which consists of two valence subbands. Estimates of the effective density-of-states masses of holes and of the gap between the valence-band extrema in Sb2Te3: Sn agree with the data available for the Sb2Te3 not doped with tin. X-ray photoelectron spectra of Sb2Te3: Sn single crystals do not exhibit noticeable core-level shifts and electron density redistribution in the valence band.  相似文献   

20.
Using in situ atomic force microscope (AFM) and Raman spectroscopy, the real-time crystallization properties of Ge2Sb2Te5 films at different temperature were characterized. The given AFM topograph and phase images revealed that the structure of amorphous Ge2Sb2Te5 films began to change at a temperature of as low as 100 °C. When the temperature reached 130 °C, some crystal fragments had formed at the film surface. Heating up to 160 °C, the size of the visible crystal fragments increased, but decreased at a higher temperature of 200 °C. When the Ge2Sb2Te5 film was cooled down to room temperature (RT) from 200 °C, the crystal fragments divided into crystal grains due to the absence of heating energy. The Raman spectra at different temperature further verified the structure evolution of the Ge2Sb2Te5 film with temperature. This work is of significance for the preparation of Ge2Sb2Te5 films and the erasing of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号