首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the instability of algebraic solitons for integrable nonlinear equations in one spatial dimension that include modified KdV, focusing NLS, derivative NLS, and massive Thirring equations. We develop the analysis of the Evans function that defines eigenvalues in the corresponding Lax operators with algebraically decaying potentials. The standard Evans function generically has singularities in the essential spectrum, which may include embedded eigenvalues with algebraically decaying eigenfunctions. We construct a renormalized Evans function and study bifurcations of embedded eigenvalues, when an algebraically decaying potential is perturbed by a generic potential with a faster decay at infinity. We show that the bifurcation problem for embedded eigenvalues can be reduced to cubic or quadratic equations, depending on whether the algebraic potential decays to zero or approaches a nonzero constant. Roots of the bifurcation equations define eigenvalues which correspond to nonlinear waves that are formed from unstable algebraic solitons. Our results provide precise information on the transformation of unstable algebraic solitons in the time-evolution problem associated with the integrable nonlinear equation. Algebraic solitons of the modified KdV equation are shown to transform to either travelling solitons or time-periodic breathers, depending on the sign of the perturbation. Algebraic solitons of the derivative NLS and massive Thirring equations are shown to transform to travelling and rotating solitons for either sign of the perturbation. Finally, algebraic homoclinic orbits of the focusing NLS equation are destroyed by the perturbation and evolve into time-periodic space-decaying solutions.  相似文献   

2.
We construct well-known integrable equations with their Lax pairs from the corresponding linear equations using our nonlinearization scheme. Using negative powers in the spectral flow to deform the time Lax operator, we find a class of perturbations that unlike the usual perturbations, which spoil the system integrability, exhibit a twofold integrable hierarchy, including those for the KdV, modified KdV, sine-Gordon, nonlinear Schrödinger (NLS), and derivative NLS equations. We discover hidden possibilities of using the perturbed hierarchy of the NLS equations to amplify and control optical solitons propagating through a fiber in a doped nonlinear resonant medium.  相似文献   

3.
4.
nonfocusing instabilities that exist independently of the well-known modulational instability of the focusing NLS equation. The focusing versus defocusing behavior of scalar NLS fields is a well-known model for the corresponding behavior of pulse transmission in optical fibers in the anomalous (focusing) versus normal (defocusing) dispersion regime [19], [20]. For fibers with birefringence (induced by an asymmetry in the cross section), the scalar NLS fields for two orthogonal polarization modes couple nonlinearly [26]. Experiments by Rothenberg [32], [33] have demonstrated a new type of modulational instability in a birefringent normal dispersion fiber, and he proposes this cross-phase coupling instability as a mechanism for the generation of ultrafast, terahertz optical oscillations. In this paper the nonfocusing plane wave instability in an integrable coupled nonlinear Schr?dinger (CNLS) partial differential equation system is contrasted with the focusing instability from two perspectives: traditional linearized stability analysis and integrable methods based on periodic inverse spectral theory. The latter approach is a crucial first step toward a nonlinear , nonlocal understanding of this new optical instability analogous to that developed for the focusing modulational instability of the sine-Gordon equations by Ercolani, Forest, and McLaughlin [13], [14], [15], [17] and the scalar NLS equation by Tracy, Chen, and Lee [36], [37], Forest and Lee [18], and McLaughlin, Li, and Overman [23], [24]. Received February 9, 1999; accepted June 28, 1999  相似文献   

5.
Multimode propagation of electromagnetic waves in optical fibre is often described by coupled nonlinear Schrödinger (NLS) equations. To understand the integrability properties of such coupled NLS systems, we extend the Painlevé singularity structure analysis of two coupled systems to three coupled systems and identify four integrable sets of parameters. We bilinearize these cases to obtain soliton solutions. The results are extended to N-coupled systems, completing the earlier analysis of Sahadevan, Tamizhmani and Lakshmanan.  相似文献   

6.
In the present work, employing the nonlinear equations of an incompressible, isotropic and elastic thick tube and the approximate equations of an incompressible inviscid fluid, and then utilizing the reductive perturbation technique the amplitude modulation of weakly nonlinear waves is examined. It is shown that the amplitude modulation of these waves is governed by a nonlinear Schrödinger(NLS) equation. The range of modulational instability of the monochromatic wave solution with the initial deformation, material and geometrical characteristics is discussed for some elastic materials.  相似文献   

7.
We generalize a previously published numerical approach for the one-dimensional (1D) nonlinear Schrödinger (NLS) equation based on a multidomain spectral method on the whole real line in two ways: first, a fully explicit fourth-order method for the time integration, based on a splitting scheme and an implicit Runge-Kutta method for the linear part, is presented. Second, the 1D code is combined with a Fourier spectral method in the transverse variable both for elliptic and hyperbolic NLS equations. As an example we study the transverse stability of the Peregrine solution, an exact solution to the 1D NLS equation and thus a y-independent solution to the 2D NLS. It is shown that the Peregine solution is unstable agains all standard perturbations, and that some perturbations can even lead to a blow-up for the elliptic NLS equation.  相似文献   

8.
In this article we prove the existence of multi solitary waves of a fourth order Schrödinger equation (4NLS) which describes the motion of the vortex filament. These solutions behave at large time as sum of stable Hasimoto solitons. It is obtained by solving the system backward in time around a sequence of approximate multi solitary waves and showing convergence to a solution with the desired property. The new ingredients of the proof are modulation theory, virial identity adapted to 4NLS and energy estimates. Compare to NLS, 4NLS does not preserve Galilean transform which contributes the main difficulty in spectral analysis of the corresponding linearized operator around the Hasimoto solitons.  相似文献   

9.
We consider the nonlinear Schrödinger (NLS) equation posed on the box [0,L]d with periodic boundary conditions. The aim is to describe the long‐time dynamics by deriving effective equations for it when L is large and the characteristic size ɛ of the data is small. Such questions arise naturally when studying dispersive equations that are posed on large domains (like water waves in the ocean), and also in the theory of statistical physics of dispersive waves, which goes by the name of “wave turbulence.” Our main result is deriving a new equation, the continuous resonant (CR) equation, which describes the effective dynamics for large L and small ɛ over very large timescales. Such timescales are well beyond the (a) nonlinear timescale of the equation, and (b) the euclidean timescale at which the effective dynamics are given by (NLS) on ℝd. The proof relies heavily on tools from analytic number theory, such as a relatively modern version of the Hardy‐Littlewood circle method, which are modified and extended to be applicable in a PDE setting.© 2018 Wiley Periodicals, Inc.  相似文献   

10.
11.
Surface wave data from the Adriatic Sea are analysed in the light of new data analysis techniques which may be viewed as a nonlinear generalization of the ordinary Fourier transform. Nonlinear Fourier analysis as applied herein arises from the exact spectral solution to large classes of nonlinear wave equations which are integrable by the inverse scattering transform (IST). Numerical methods are discussed which allow for implementation of the approach as a tool for the time series analysis of oceanic wave data. The case for unidirectional propagation in shallow water, where integrable nonlinear wave motion is governed by the Korteweg-deVries (KdV) equation with periodic/quasi-periodic boundary conditions, is considered. Numerical procedures given herein can be used to compute a nonlinear Fourier representation for a given measured time series. The nonlinear oscillation modes (the IST ‘basis functions’) of KdV obey a linear superposition law, just as do the sine waves of a linear Fourier series. However, the KdV basis functions themselves are highly nonlinear, undergo nonlinear interactions with each other and are distinctly non-sinusoidal. Numerical IST is used to analyse Adriatic Sea data and the concept of nonlinear filtering is applied to improve understanding of the dominant nonlinear interactions in the measured wavetrains.  相似文献   

12.
13.
Whitham modulation equations are derived for the nonlinear Schrödinger equation in the plane ((2+1)-dimensional nonlinear Schrödinger [2d NLS]) with small dispersion. The modulation equations are obtained in terms of both physical and Riemann-type variables; the latter yields equations of hydrodynamic type. The complete 2d NLS Whitham system consists of six dynamical equations in evolutionary form and two constraints. As an application, we determine the linear stability of one-dimensional traveling waves. In both the elliptic and hyperbolic cases, the traveling waves are found to be unstable. This result is consistent with previous investigations of stability by other methods and is supported by direct numerical calculations.  相似文献   

14.
Split-step orthogonal spline collocation (OSC) methods are proposed for one-, two-, and three-dimensional nonlinear Schrödinger (NLS) equations with time-dependent potentials. Firstly, the NLS equation is split into two nonlinear equations, and one or more one-dimensional linear equations. Commonly, the nonlinear subproblems could be integrated directly and accurately, but it fails when the time-dependent potential cannot be integrated exactly. In this case, we propose three approximations by using quadrature formulae, but the split order is not reduced. Discrete-time OSC schemes are applied for the linear subproblems. In numerical experiments, many tests are carried out to prove the reliability and efficiency of the split-step OSC (SSOSC) methods. Solitons in one, two, and three dimensions are well simulated, and conservative properties and convergence rates are demonstrated. We also apply the ways of solving the nonlinear subproblems to the split-step finite difference (SSFD) methods and the time-splitting spectral (TSSP) methods, and the approximate ways still work well. Finally, we apply the SSOSC methods to solve some problems of Bose-Einstein condensates.  相似文献   

15.
We analyze the fundamental properties of models of the multicomponent nonlinear Schrodinger (NLS) type related to symmetric spaces and construct new types of reductions of these systems. We briefly describe the spectral properties of the Lax operators L, which in turn determine the corresponding recursion operator Λ and the fundamental properties of the relevant class of nonlinear evolution equations. The results are illustrated by specific examples of NLS-type systems related to the D.III symmetric space for the so(8) algebra. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 2, pp. 313–323, August, 2005.  相似文献   

16.
王兆玲  肖衡 《应用数学和力学》2015,36(11):1135-1144
海洋表面波的3-波至5-波约化Hamilton方程由于其对称多项式简化结构以及保能量等独特优点,得到广泛应用.但是,据相关近似假设,其适用范围局限于波陡很小的弱非线性波.于是进一步探讨下述推广问题: 对一定范围内的有限幅非线性波,在足够精确意义上是否也能获得具对称多项式简化结构的约化Hamilton方程?由于涉及复杂非线性强耦合,在该重要方面至今尚未取得进展.提出基于Chebyshev(切比雪夫)多项式逼近处理精确水波方程强非线性耦合的新简化途径,导出具对称多项式简化结构的新约化Hamilton方程.新结果将波数与波陡之积为小量的弱非线性情形拓广到该积直至1.035的非线性情形.分析表明,在该范围内新结果的误差不超过5%,特别,当前述积邻近于0.9时新结果给出精确结果.  相似文献   

17.
N. A. Shananin 《Acta Appl Math》2002,72(1-2):101-110
We prove the theorems on propagation of C -solution germ invariance for one class of weakly nonlinear differential equations. This class includes generalized versions of KdV, NLS, Boussinesq and other equations of spreading nonlinear waves.  相似文献   

18.
The propagation of wave envelopes in two‐dimensional (2‐D) simple periodic lattices is studied. A discrete approximation, known as the tight‐binding (TB) approximation, is employed to find the equations governing a class of nonlinear discrete envelopes in simple 2‐D periodic lattices. Instead of using Wannier function analysis, the orbital approximation of Bloch modes that has been widely used in the physical literature, is employed. With this approximation the Bloch envelope dynamics associated with both simple and degenerate bands are readily studied. The governing equations are found to be discrete nonlinear Schrödinger (NLS)‐type equations or coupled NLS‐type systems. The coefficients of the linear part of the equations are related to the linear dispersion relation. When the envelopes vary slowly, the continuous limit of the general discrete NLS equations are effective NLS equations in moving frames. These continuous NLS equations (from discrete to continuous) also agree with those derived via a direct multiscale expansion. Rectangular and triangular lattices are examples.  相似文献   

19.
The Boltzmann equation which describes the time evolution of a large number of particles through the binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equations and Navier-Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two nonlinear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear setting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found and used for closing the energy estimates.  相似文献   

20.
By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger–KdV equations and the Hirota–Maccari equations. New exact complex solutions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号