首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shear thickening electrolytes and magneto-rheological electrolytes can reversibly switch between liquid and semisolid or even solid phases at specific conditions. They afford the advantages of both liquid and solid electrolytes and have the potential to enhance impact resistance of electronic devices. This review presents the recent progress of such electrolytes. It aims to provide insights into the properties and performance. We also present the challenges in producing high-performance electrolytes and the future perspectives.  相似文献   

2.
Polar n-alkylmonoamines of general formula H3C(CH2) n NH2 (n = 1, 3, 5) interacted with layered silicate vermiculite at the solid/liquid interface. The maximum amount of amine intercalated (N f ) inside the interlamellar space were 0.62, 0.46, and 0.38 mmol g−1, to give the following order of intercalation ethyl → butyl → hexylamines. The layered vermiculite solid was suspended in deionized water and calorimetrically titrated with this series of amines, to give favorable thermodynamic data, such as exothermic enthalpy, negative Gibbs free energy and positive entropy data.  相似文献   

3.
Recently a method termed constrained fluid lambda-integration was proposed for calculating the free energy difference between bulk solid and liquid reference states via the construction of a reversible thermodynamic integration path; coupling the two states in question. The present work shows how the application of the constrained fluid lambda-integration concept to solid/liquid slab simulation cells makes possible a generally applicable computer simulation methodology for calculating the free energy of any surface and/or surface defect structure, including surfaces requiring variations in surface atom or density number, such as the (1 x 5) Au(100) or (1 x 2) missing row Au(110) reconstructed surfaces or excess adatom/vacancy/step populated surfaces. We evaluate the methodology by calculating the free energy of various disordered high temperature Au(110) embedded atom method surfaces constrained to differing excess surface atom numbers [including those corresponding to the (1 x 2) missing row reconstructed surface] and obtained the interesting result that at 1000 K (as distinct from lower temperatures) the free energy difference between these surfaces is reduced to zero; a result which is consistent with an expected order-disorder phase transition for the Au(110) surface at such high temperatures.  相似文献   

4.
A study has been made of the influence of gravitational forces on the thinning of the liquid film which forms as a solid sphere comes to rest on a liquid/fluid interface. It is found that rates of drainage can be dramatically affected by the ratio of gravity to surface tension forces within the film. At long times a secondary film can possibly be formed which spreads out radially from the apex of the sphere.  相似文献   

5.
The kinetic and thermodynamic parameters of degradation of doripenem were studied using a high‐performance liquid chromatography method. In dry air, the degradation of doripenem was a first‐order reaction depending on the substrate concentration. At increased relative air humidity, doripenem was degraded according to the autocatalysis kinetic model. The dependence ln k = f1/T) was described by the equations ln k = 5.10 ± 13.06 ? (7576 ± 4939)(1/T) in dry air and ln k = 46.70 ± 22.44 ? (19,959 ± 8031)(1/T) at 76.4% relative humidity (RH). The thermodynamic parameters Ea, ΔH≠a, and ΔS≠a of the degradation of doripenem were calculated. The dependence ln k = f (RH%) was described by the equation ln k = (0.155 ± 0.077) × 10?1 (RH%) ? (3.45 ± 21.8) × 10?10. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 722–728, 2012  相似文献   

6.
Proton Dynamic Nuclear Polarization (DNP) experiments were conducted on a 3.4 T homebuilt hybrid pulsed-EPR-NMR spectrometer, on static samples containing 10 mM or 40 mM TEMPOL in frozen glassy solutions of DMSO/water. During DNP experiments proton-NMR signals are enhanced with the help of microwave (MW) irradiation on or close to the Electron Paramagnetic Resonance (EPR) spectrum of the free radicals in the sample, transferring polarization from the free electrons to the nuclei. In the solid state a distinction is made between three DNP enhancement mechanisms: the Solid Effect (SE), the Cross Effect (CE) and Thermal Mixing (TM). In an effort to determine the dominant DNP mechanisms responsible for the enhancement of the nuclear signals, electron and nuclear spin-lattice relaxation rates, enhancement buildup times and microwave (MW) swept DNP spectra were measured as a function of temperature and MW irradiation strength. We observed lineshape variations of the DNP spectra that indicated changes in the relative contributions of SE-DNP and CE-DNP with temperature and MW power. Using a theoretical model describing the SE-DNP and CE-DNP the DNP spectra could be analyzed without involving the TM-DNP mechanism and the relative SE-DNP and CE-DNP contributions to the nuclear enhancement could be determined. From this analysis it follows that lowering the temperature beyond 20 K increases the SE-DNP and decreases the CE-DNP contributions. Possible explanations for this behavior are suggested.  相似文献   

7.
The behaviour of small solid particles and liquid droplets at fluid interfaces is of wide interest, in part because of the roles they play in the stability of foams and emulsions. Here we focus on solid particles at liquid interfaces, both singly and in highly structured monolayers. We briefly mention small oil lenses on water in connection with the determination of line tension, τ. Particles are surface-active in the sense that they often adhere quite strongly to liquid surfaces, although of course they are not usually amphiphilic. The three-phase contact line around a particle at an interface is associated with an excess free energy resulting in a tendency of the line to contract (positive τ, which is a 1D analogue of surface tension) or to expand (negative τ). Positive line tension acts so as to push the contact angle of a particle with the fluid interface further away from 90°, i.e. to force the particle towards the more “wetting” of the two bulk phases. It also leads to activation barriers to entry and departure of particles from an interface. The behaviour of particle monolayers at octane/water interfaces is also discussed . It is found that, for monodisperse spherical polystyrene particles containing ionisable sulphate groups at the surface, highly ordered monolayers are formed. This appears to result from very long range electrostatic repulsion mediated through the oil phase. Surface pressure–surface area isotherms are discussed for particle monolayers and it is shown, using light microscopy, that at monolayer “collapse” particles are not expelled from the monolayers but rather the monolayer folds, remaining intact. This has an important bearing on methods, involving the use of the Langmuir trough, for the experimental determination of contact angles and line tensions in particulate systems. Received: 18 July 1999/Accepted: 30 August 1999  相似文献   

8.
The condensed phase of the alternating copolyester of p-hydroxybenzoic acid (HBA) and 2-hydroxy-6-naphthoic acid (HNA) is investigated by studying the room temperature packing arrangement of the copolymer chains. A molecular modeling methodology is employed with a Monte Carlo sampling of the configurational phase space. Realistic poly(HBA-alt-HNA) polymer chains are represented by an explicit atom representation of the HBA/HNA dimers. States are sampled from the NVT ensemble using a sampling scheme consisting of (1) valence and torsional variations, (2) rigid body rotations of the chain about the chain axis, and (3) rigid body translations of the chain. The effect of chain packing on the conformation of chains, as well as the relative intra- and intermolecular orientations of aromatic rings, is investigated. Correlation of chain positioning along the chain axis is dominated by aromatic rings maintaining a center-to-center plane of registry. These layers of aromatic units pack with a preference for edge-to-face orientations in a herringbone-type pattern and have an intermolecular ring angle between the pairs of aromatic rings in the unit cell that is ca. 68°. The aromatic rings, on average, are rotated 38° out from the b–c plane. The phenylene rings of these copolyesters are less restricted in their relative orientation in comparison to the naphthalene rings. Intramolecular orientational probability density distributions indicate a preference for staggering the successive aromatic rings along the chain, with a staggering angle of ca. 66°. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 727–741, 1998  相似文献   

9.
Using methods and approaches developed by the authors, a new low-parametric state equation for describing the thermal properties of normal substances is obtained that allows us to describe the thermal properties of gases, liquids, and fluids over a range of densities from the ideal gas state to the triple point, except for a critical region, with a high degree of accuracy close to that of an experiment. The caloric properties and speed of sound are calculated for argon, nitrogen, and carbon dioxide without using any caloric data except for the enthalpy of an ideal gas. It is established that the calculated values of enthalpy, heat capacity, the speed of speed of sound, etc., are in good agreement with the experimental (reliably tabulated) data.  相似文献   

10.
Poly(ethylene oxide)(PEO) is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li+),but also can conduct Li+through segmental motion in long-range.However,the crystal aggregation state of PEO restricts the conduction of Li+ especially at room temperature.In this work,an amorphous polymer electrolyte with ethylene oxide(EO) and propylene oxide(PO) block structure(B-PEG@DMC) synthesized by the transesterification is firstly obtained,showing ...  相似文献   

11.
It is shown that the Hirai-Eyring model for the liquid state is capable of accurately describing the p, V, T behavior of liquid polymers in the temperature range over which measurements are now made, and below. Once the parameter choices necessary to accomplish the fit are made for a particular polymer, the excess thermodynamic functions (differences in properties, liquid less solid) are determined by the same parameters. Above the glass transition temperature Tg the volume, excess enthalpy, and square of the excess entropy are predicted by the model to be essentially linear with temperature, in agreement with experiment. Below Tg, these functions do not remain linear (as is usually assumed in extrapolating the equilibrium behavior to low temperatures), but instead they rapidly approach zero in a continuous way as the temperature is lowered. These remarks apply to glass-forming materials composed of small molecules, as well as to polymers. The “paradox” raised by Kauzmann is thus resolved, and the Gibbs-DiMarzio second-order transition appears to be unnecessary.  相似文献   

12.
13.
14.
The thermodynamic and kinetic behaviors for solid superheating and liquid supercooling were critically examined and compared via molecular-dynamics simulations. It is shown that the large elastic energy associated with internal melting and solid-liquid interface disorder play important roles in superheating. The growth rate is anisotropic for supercooling, but isotropic for superheating. Supercooling can be well described by the classical nucleation theory, whereas superheating shows many exceptions. The underlying mechanisms for these differences are discussed.  相似文献   

15.
16.
A new approach has been developed for calculating the properties of mixtures based on an equation of state explicit in reduced Helmholtz energy. This approach allows for the representation of the thermodynamic properties over a wide range of fluid states and is based on highly accurate equations of state for the pure components combined at the reduced temperature and density of the mixture. The reducing parameters used for temperature and density depend on composition. For simple mixtures (those that closely follow Raoult's law), a very accurate representation of all thermodynamic properties has been achieved with relatively simple functions. For nonideal mixtures, the reducing functions for density and temperature were modified, and a departure function was added to the equation of state. Generally, the model is able to represent liquid and vapor states with uncertainties of 0.1% in density, 1% in heat capacities and 1% in bubble point pressures if experimental data of comparable uncertainties exist. Two applications of the mixture model concepts were developed independently by the authors in the United States and Germany over the same time period. These applications include the development of individual equations for each binary system and a generalization of the model which is valid for a wide variety of mixtures. The individual approaches are presented with an explanation of the similarities and differences. Although the paper focuses mainly on binary systems, some results for ternary mixtures are also presented.  相似文献   

17.
Correlation of fluorescence and crystal packing in thermally interconvertible polymorphic states of octyloxy-cyano-substituted diphenylbutadiene possessing visually distinguishable fluorescence reveals that solid state fluorescence of this class of derivatives depends on their monomer-J-aggregate ratio, controlled by variations in their molecular packing.  相似文献   

18.
The force between mica sheets in a polar liquid (propylene carbonate) with various electrolyte concentrations is found to be the sum of an electrostatic double-layer force, accurately described by Gouy—Chapman theory, and a short-range oscillatory salvation force, qualitatively similar to that found in non-polar liquids.  相似文献   

19.
Extraction methods applied in analysis of water samples can be named as liquid chromatography. Very often, these techniques are used as sample preparation method before another analytical method such gas chromatography or high performance liquid chromatography. The subject of this review is to compare the extraction techniques of liquid samples and discuss their characteristics in comparison with liquid chromatography. Some new extraction techniques are described, and some characteristic parameters are compared.  相似文献   

20.
A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. The structure of these nanocomposite materials have been characterized using FT-IR, elemental analysis, XRD and solid state NMR techniques, including 19F magic-angle spinning (MAS) NMR, 19F NMR relaxation time measurements, 29Si MAS, 1H MAS, 1H-13C cross-polarization magic-angle spinning (CPMAS), and 1H-13C heteronuclear correlation (HETCOR) 2D NMR. The results showed that thermal stability of Nafion was improved moderately by the addition of dodecylamine modified MMT without intercalation. FT-IR and 29Si MAS NMR results indicated that dodecylamine modification did not result in obvious changes in the MMT lattice structure. The XRD results showed that the protonated dodecylamine has been embedded and intercalated into the MMT interlayers, whereas Nafion was not. Elemental analysis results also suggested that some dodecylamine was adsorbed on the surface of MMT. 1H-13C HETCOR 2D NMR experiment clearly indicated that strong electrostatic interactions were present between the NH+3 group of dodecylamine and the fluorine-containing groups (CF3, OCF2, and SCF2) of Nafion resin. Such electrostatic interactions are probably the major contributors for the improved thermal stability of the resultant composite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号