首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of aeration, agitation, and bed loading on biomass and product concentration during citric acid biosynthesis by solid-state fermentation was investigated. For this purpose, Aspergillus niger S was cultivated on sugar beet pulp in a 4.5 dm3 horizontal rotating drum bioreactor. The results suggest that the parameters examined have a remarkable effect on the quantity of biomass being formed and on the product concentration. The maximum citric acid production (about 150 g per kg of the substrate dry matter) was obtained under the following conditions: aeration rate 0.2 dm3 kg−1 min−1, mixing (periodical) 1 min once an hour, and bed loading 30 % of the bioreactor working volume. However, these values did not favour biomass formation. Moreover, it was found that accumulation of the product reached its maximum when the amount of biomass was minimal (approximately 252-29 g per kg of the substrate dry matter) under the conditions involved. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

2.
A sensitive, simple and rapid method for ultra-trace determination of iron and manganese based on ultrasound assisted pseudodigestion in citric acid fermentation medium samples (beet and cane molasses and raw sugar based mediums) is described. Parameters influencing pseudo-digestion, such as sonication time, sample mass and solvent system were fully optimized. Final solutions obtained upon sonication were analyzed by electrothermal atomic absorption spectrometry (ETAAS). The best conditions for metal pseudo-digestion were as follows: a 25, 30 and 20 min sonication time for beet molasses, cane molasses and raw sugar based medium samples, respectively, 0.7 g sample mass of raw sugar based samples, 0.5 g sample mass of molasses based samples and an extraction mixture of concentrated HNO3-H2O2, in 25 mL of solvent. Analytical results obtained for the two metals by ultrasound assisted pseudo-digestion and conventional wet digestion methods showed a good agreement. This method reduces the time required for all treatments (heating to dryness, cooling and separation) in comparison with conventional wet digestion method. The accuracy of the method was tested by comparing the obtained results with that of conventional wet digestion method.   相似文献   

3.
A Bacillus subtilis isolate was shown to be able to produce extracellular protease in solid-state fermentations (SSF) using soy cake as culture medium. A significant effect of inoculum concentration and physiological age on protease production was observed. Maximum activities were obtained for inocula consisting of exponentially growing cells at inoculum concentrations in the range of 0.7–2.0 mg g−1. A comparative study on the influence of cultivation temperature and initial medium pH on protease production in SSF and in submerged fermentation (SF) revealed that in SSF a broader pH range (5–10), but the same optimum temperature (37°C), is obtained when compared to SF. A kinetic study showed that enzyme production is associated with bacterial growth and that enzyme inactivation begins before biomass reaches a maximum level for both SF and SSF. Maximum protease activity and productivity were 960 U g−1 and 15.4 U g−1 h−1 for SSF, and 12 U mL−1 and 1.3 U mL−1 h−1 for SF. When SSF protease activity was expressed by volume of enzyme extract, the enzyme level was 10-fold higher and the enzyme productivity 45% higher than in SF. These results indicate that this bacterial strain shows a high biotechnological potential for protease production in solid-state fermentation.  相似文献   

4.
Rapid and sensitive determination of citric acid in fermentation media by pyrolysis mass spectrometry (Py–MS) is proposed. Owing to high specificity of this method, distinguishing the citric acid from the matrix and by-products formed in the Krebs cycle is possible. Selected ion monitoring (SIM) mode is used for quantitative measurements, in which mass to charge (m/z) values of 175 of citric acid and 138 of 3-nitroaniline as internal standard are chosen. Limit of detection (LOD) for this method has been found to be 1 ng ml−1 and the linear working range was 10 ng ml−1–100 mg ml−1. Relative standard deviation (R.S.D.) of the method for five replicates was 0.84%. Results of Py–MS are compared with those obtained by UV–vis spectrophotometric method. Also, factor analysis is used for evaluating the influence of pH, molasses concentration, time and shaker intensity on the production of citric acid by Aspergillus niger.  相似文献   

5.
Five strains of Gibberella fujikuroi and one of Fusarium moniliforme were screened for the production of gibberellic acid (GA3) in coffee husk, and based on the results, one strain, G. fujikuroi LPB-06, was selected. The comparative production of GA3 by solid-state fermentation and submerged fermentation indicated better productivity with the former technique, mainly with pretreated substrate. The GA3 accumulation was 6.1 times higher in the case of solid-state fermentation. Considering the C:N relation, higher yields of GA3 were achieved using a mixed substrate comprising coffee husk and cassava bagasse (7:3, dry wt), increasing the results twice. Supplementation of an optimized saline solution containing 0.03% FeSO4 and 0.01% (NH4)2SO4 enhanced the accumulation of GA3 1.7 times in the fermented substrate. Under the finally optimized condition, the culture gave a maximum of 492.5 mg of GA3/kg of dry substrate, with a pH of 5.3, moisture of 75%, and incubation temperature of 29°C. GA3 yield was almost 13 times more than the initial results.  相似文献   

6.
Among the lignocellulosic substrates tested, wheat bran supported a high xylanase (EC 3.2.1.8) secretion by Humicola lanuginosa in solid-state fermentation (SSF). Enzyme production reached a peak in 72 h followed by a decline thereafter. Enzyme production was very high (7832 U/g of dry moldy bran) when wheat bran was moistened with tap water at a substrate-to-moistening agent ratio of 1:2.5 (w/v) and an inoculum level of 3 × 106 spores/10 g of wheat bran at a water activity (a w ) of 0.95. Cultivation of the mold in large enamel trays yielded a xylanase titer comparable with that in flasks. Parametric optimization resulted in a 31% increase in enzyme production in SSF. Xylanase production was approx 23-fold higher in SSF than in submerged fermentation (SmF). A threshold constitutive level of xylanase was secreted by H. lanuginosa in a medium containing glucose as the sole carbon source. The enzyme was induced by xylose and xylan. Enzyme synthesis was repressed beyond 1.0% (w/v) xylose in SmF, whereas it was unaffected up to 3.0% (w/w) in SSF, suggesting a minimization of catabolite repression in SSF.  相似文献   

7.
Glucoamylase production by Aspergillus niger in solid-state fermentation was optimized using factorial design and response surface techniques. The variables evaluated were pH and bed thickness in tray, having as response enzyme production and productivity. The bed thickness in tray was the most significant variable for both responses. The highest values for glucoamylase production occurred using pH 4.5 and bed thickness in the inferior limits at 2.0–4.2 cm. For productivity, the optimal conditions were at pH 4.5 as well and bed thickness from 4.4 to 7.5 cm. The optimal conditions for glucoamylase production while obtaining high activity without loss of productivity were pH 4.5 and bed thickness in tray from 4.0 to 4.5 cm, which resulted in an enzyme production of 695 U/g and productivity of 5791 U/h.  相似文献   

8.
This study is related to the isolation of fungal strain for xylanase production using agro-industrial residues. Forty fungal strains with xylanolytic potential were isolated by using xylan agar plates and quantitatively screened in solid-state fermentation. Of all the tested isolates, the strain showing highest ability to produce xylanase was assigned the code Aspergillus niger LCBT-14. For the enhanced production of the enzyme, five different fermentation media were evaluated. Out of all media, M4 containing wheat bran gave maximum enzyme production. Effect of different variables including incubation time, temperature, pH, carbon and nitrogen sources has been investigated. The optimum enzyme production was obtained after 72 h at 30°C and pH 4. Glucose as a carbon source while ammonium sulphate and yeast extract as nitrogen sources gave maximum xylanase production (946 U/mL/min). This study was successful in producing xylanase by A. niger LCBT-14 economically by utilising cheap indigenous substrate.  相似文献   

9.
Citric acid is finding new areas of use each year and the demand for the acid is constantly increasing. Being a bulk chemical, the continuous production of citric acid would be advantageous. The paper presents the results from ammonia limited batch and continuous fermentations using the yeast strainSaccharomycopsis (Candida) lipolytica (NRRL Y-7576). Mathematical models were developed for growth and glucose utilization in batch and continuous culture. Cell and acid yields appeared to be almost the same in batch and continuous culture. The specific production rates were found to be constant, equal to 0.053 g/g h, in the batch fermentations but varied in the continuous experiments from 0 to 0.11 g/g h depending on the fermentation conditions. Continuous production in a single stage CSTR was studied for over 1,000 hours without shutdown.  相似文献   

10.
Invertase production by Aspergillus niger grown by solid-state fermentation was found to be higher than by conventional submerged fermentation. The haploid mutant strains Aw96-3 and Aw96-4 showed better productivity of various enzymes, as compared to wild-type parental strain A. niger C28B25. Here we use parasexual crosses of those mutants to increase further the productivity of invertase in solid-state fermentation. We isolated both a diploid (DAR2) and an autodiploid (AD96-4) strain, which were able to grow in minimal medium after mutation complementation of previously isolated haploid auxotrophic strains. Invertase production was measured in solid-state fermentation cultures, using polyurethane foam as an inert support for fungal growth. Water activity value (Aw) was adjusted to 0.96, since low Aw values are characteristic in some solid-state fermentation processes. Such diploid strains showed invertase productivity levels 5–18 times higher than levels achieved by the corresponding haploid strains. For instance, values for C28B25, Aw96-3, Aw96-4, DAR2, and AD96-4 were 441, 254, 62, 1324, and 2677 IU/(L·h), respectively. These results showed that genetic recombination, achieved through parasexual crosses in A. niger, results in improved strains with potential applications for solid-state fermentation processes.  相似文献   

11.
The use of purified xylan as a substrate for bioconversion into xylanases increases the cost of enzyme production. Consequently, there have been attempts to develop a bioprocess to produce such enzymes using different lignocellulosic residues. Filamentous fungi have been widely used to produce hydrolytic enzymes for industrial applications, including xylanases, whose levels in fungi are generally much higher than those in yeast and bacteria. Considering the industrial importance of xylanases, the present study evaluated the use of milled sugarcane bagasse, without any pretreatment, as a carbon source. Also, the effect of different nitrogen sources and the C∶N ratio on xylanase production by Aspergillus awamori were investigated, in experiments carried out in solid-state fermentation. High extracellular xylanolytic activity was observed on cultivation of A. awamori on milled sugarcane bagasse and organic nitrogen sources (45 IU/mL for endoxylanase and 3.5 IU/mL for β-xylosidase). Endoxylanase and β-xylosidase activities were higher when sodium nitrate was used as the nitrogen source, when compared with peptone, urea, and ammonium sulfate at the optimized C∶N ratio of 10∶1. The use of yeast extract as a supplement to the these nitrogen sources resulted in considerable improvementin the production of xylanases, showing the importance of this organic nitrogen source on A. awamori metabolism.  相似文献   

12.
Studies were carried out in a packed-bed column fermentor using coffee husk as substrate in order to verify a relationship between caffeine degradation and the respiration of Aspergillus sp. LPBx. Fermentation conditions were optimized by using factorial design experiments. The kinetic study showed that the caffeine degradation was related to the development of mold and its respiration and also with the consumption of reducing sugars present in coffee husk. From the values obtained experimentally for oxygen uptake rate and CO2 evolved, we determined a biomass yield of 3.811 g of biomass/g of consumed O2 and a maintenance coefficient of 0.0031 g of consumed O2/(g of biomass·h). The maximum caffeine degradation achieved was 90%.  相似文献   

13.
14.
阻抑动力学荧光法测定柠檬酸   总被引:6,自引:0,他引:6  
基于在高氯酸介质中柠檬酸能抑制铁(Ⅲ)催化H2O2氧化吡咯红Y的反应,建立了一种测定柠檬酸的动力学荧光分析法。方法的线性范围为0.12-2.4μg/mL,检出限为0.05μg/mL。将方法用于汽水中柠檬酸的测定,回收率为97%-106%。  相似文献   

15.
柠檬酸试剂中痕量无机阴阳离子的离子色谱法测定   总被引:5,自引:0,他引:5  
选用柱容量较高、亲水性较强的阴离子分析柱IonPac AS18,以30mmol/L KOH为淋洗液,等度淋洗分析了高浓度柠檬酸中的痕量无机阴离子。选用柱容量较高的阳离子分析柱IonPac CS12A,以H2SO4作淋洗液分析了柠檬酸试剂中的痕量阳离子。在所选色谱条件下,无需样品前处理,直接进样,电导检测,高浓度柠檬酸不影响痕量阴离子或阳离子的测定。方法具有良好的线性(r=0.9941~1.000),样品中所测离子峰面积的相对标准偏差(RSD)均在9.0%以下(n=7),回收率在82.7%~110%之间,检出限低于3.7μg/L。  相似文献   

16.
Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.  相似文献   

17.
Kaolinite is a dominant clay mineral in the soils in tropical and subtropical regions, and its dissolution has an influence on a variety of soil properties. In this work, kaolinite dissolution induced by three kinds of low-molecular-weight organic acid, i.e., citric, oxalic, and malic acids, was evaluated under far-from-equilibrium conditions. The rates of kaolinite dissolution depended on the kind and concentration of organic acids, with the sequence R(oxalate)>R(citrate)>R(malate). Chemical calculation showed the change in concentration of organic ligand relative to change in concentration of organic acid in suspensions of kaolinite and organic acid. The effect of organic acid on kaolinite dissolution was modeled by species of organic anionic ligand. For oxalic acid, L(2-)(oxalic) and HL(-)(oxalic) jointly enhanced the dissolution of kaolinite, but for malic and citric acids, HL(-)(malic) and H2L-(citric) made a higher contribution to the total dissolution rate of kaolinite than L(2-)(malic) and L(3-)(citric), respectively. For oxalic acid, the proposed model was R(Si)=1.89x10(-12)x[(25x)/(1+25x)]+1.93x10(-12)x[(1990x1)/(1+1990x1)] (R2=0.9763), where x and x1 denote the concentrations of HL(oxalic) and L(oxalic), respectively, and x1=10(-3.81)xx/[H+]. For malic acid, the model was R(Si)=4.79x10(-12)x[(328x)/(1+328x)]+1.67x10(-13)x[(1149x1)/(1+1149x1)] (R2=0.9452), where x and x1 denote the concentrations of HL(malic) and L(malic), respectively, and x1=10(-5.11)xx/[H+], and for citric acid, the model was R(Si)=4.73x10(-12)x[(845x)/(1+845x)]+4.68x10(-12)x[(2855x1)/(1+2855x1)] (R2=0.9682), where x and x1 denote the concentrations of H2L(citric) and L(citric), respectively, and [Formula: see text] .  相似文献   

18.
The production of 6-pentyl-α-pyrone (6-PP), an unsaturated d-lactone with a strong coconut-like aroma was studied and compared with liquid and solid substrates. A fungi strain that produces coconut aroma compound was selected. The liquid medium of the submerged culture was used to impregnate a solid support of sugarcane bagasse in SSF (Solid State Fermentation). This substrate was adequate for growth and aroma production; the concentration obtained using SSF was higher than using liquid fermentation process. In the present work, it is demonstrated that, by solid-state-fermentation process, it is possible to produce 6-PP. The amount of 6-PP produced using a solid state substrate, following a 5 d culture, was 3 mg/g dry matter. Therefore, the amount of 6-PP produced during solid-state-fermentation process is higher than that reported in literature for submerged process.  相似文献   

19.
One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).  相似文献   

20.
利用顶空固相微萃取.气相色谱联用技术(HS-SPME-GC),以100μm聚二甲基硅氧烷(PDMS)萃取头分析柠檬酸中的5种有机挥发性杂质,并对萃取温度、吸附时间、解吸时间和盐析作用进行了研究。结果显示,该方法具有较好的精密度和较宽的线性范围,样品加标回收率92.4%-103.5%,检出限完全满足美国药典USP23对柠檬酸中有机挥发性杂质的限量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号