首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2-溴噻吩和3-溴噻吩在267 nm的C-Br键解离机理   总被引:2,自引:2,他引:0  
利用离子速度影像技术, 研究了2-溴噻吩和3-溴噻吩两种同分异构体在267 nm激光作用下的C—Br键解离机理, 获得了光解产物Br(2P3/2)和Br*(2P1/2)的能量和角度分布, 分析了两异构分子在267 nm 的C—Br键解离通道. 对于2-溴噻吩和3-溴噻吩, 产物Br来源于三个通道: (i) 从单重激发态系间窜跃到排斥的三重激发态的快速预解离; (ii)单重激发态内转化到高振动基态的热解离; (iii) 母体分子多光子电离后的解离. 2-溴噻吩的产物Br*具有类似的产生机制; 但对于3-溴噻吩, 从激发态内转换到高振动基态发生热解离成为产物Br*的主导通道, 而来自激发三重态的快速预解离通道则几乎消失. 定量地给出了各个通道的相对贡献、能量分配及各向异性分布信息. 实验发现, 随着溴原子在噻吩上取代位置远离硫原子, 来自通道(i)和(ii)产物之间的比例明显减小, 相应的各向异性分布有变弱趋势.  相似文献   

2.
A velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the primary Br(2P3/2) fragment in the photodissociation of o‐, m‐, and p‐dibromobenzene at 266 nm. The obtained translational energy distributions suggest that the Br fragments are produced via two dissociation channels. For o‐ and m‐dibromobenzene, the slow channel that yields an anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (π,π*) state followed by predissociation along a repulsive triplet (n,σ*) state localized on the C? Br bond. The fast channel that gives rise to an anisotropy parameter of 0.53–0.73 is attributed to a bound triplet state with smaller dissociation barrier. For p‐dibromobenzene, the dissociation rates are reversed, because the barrier for the bound triplet state becomes higher than the singlet–triplet crossing energy. The fractions of translational energy release are determined to be 6–8 and 29–40 % for the slow and fast channels, respectively; the quantum yields are 0.2 and 0.8, and are insensitive to the position of the substituent. The Br fragmentation from bromobenzene and bromofluorobenzenes at the same photolyzing wavelength is also compared to understand the effect of the number of halogen atoms on the phenyl ring.  相似文献   

3.
利用离子速度影像技术结合共振增强多光子电离(REMPI)技术, 研究了邻溴甲苯在234和267 nm激光作用下的光解机理. 平动能分布表明, 基态Br(2P3/2)和自旋轨道激发态Br*(2P1/2)产生于两个解离通道: 快通道和慢通道. 快通道的各向异性参数在234 nm分别为1.15(Br)和0.55(Br*), 在267 nm分别为0.90(Br)和0.60(Br*). 慢通道的各向异性参数在234 nm分别为0.12(Br)和0.14(Br*), 在267 nm分别为0.11(Br)和0.10(Br*). 源自于慢通道的Br和Br*碎片的各向异性弱于快通道. Br(2P3/2)的相对量子产率Φ(Br)在234 nm为0.67, 在267 nm为0.70. 邻溴甲苯在234 和267 nm光解主要产生基态产物Br(2P3/2). 快通道产生于(π, π*)束缚单重态被激发, 随后通过排斥性(n, σ*)态的预解离. 慢通道各向异性参数接近零, 由此证实慢通道来源于单重激发态内转换到高振动基态而引发的热解离.  相似文献   

4.
The photodissociation dynamics of m-bromofluorobenzene has been experimentally investigated at around 240 nm using the DC-slice velocity map imaging technique. The kinetic energy release spectra and the recoiling angular distributions of fragmented Br(2P3/2) and Br(2P1/2) atoms from photodissociation of m-bromofluorobenzene have been measured at different photolysis wavelengths around 240 nm. The experimental results indicate that two dissociation pathways via (pre-)dissociation of the two low-lying 1ππ* excited states dominate the production process of the ground state Br(2P3/2) atoms. Because of the weak spin-orbit coupling effect among the low-lying triplet and singlet states, the spin-orbit excited Br(2P1/2) atoms are mainly produced via singlet-triplet state coupling in the dissociation step. The similarity between the present results and that recently reported for o-bromofluorobenzene indicates that the substitution position of the fluorine atom does not significantly affect the UV photodissociation dynamics of bromofluorobenzenes.  相似文献   

5.
The photodissociation dynamics of CBr4 at 267 nm has been studied using time of flight (TOF) mass spectrometry and ion velocity imaging techniques. The photochemical products are detected with resonance enhanced multiphoton ionization (REMPI) as well as single-photon vacuum ultraviolet ionization at 118 nm. REMPI at 266.65 and 266.71 nm was used to detect the ground Br(2P32) and spin-orbit excited Br(2P12) atoms, respectively. The translational energy and angular distributions are consistent with direct dissociation from an excited triplet state and indirect dissociation from high vibrational levels on the singlet ground state surface. Br2+ ions are also observed in the TOF spectra with a focused 267 nm laser. The counter fragment, CBr2+, is observed when this photolysis laser is unfocused, and photons at 118 nm are used to ionize the radical products. The translational energy distributions of the CBr2+ and Br2+ products can be momentum matched, which indicates that molecular Br2 elimination is one of the primary dissociation channels.  相似文献   

6.
The π*←n excited state kinetics of hexafluoroacetone are reinvestigated in the presence of a vibrational relaxer and sufficient triplet state quencher so that only the reactions of the electronically excited upper singlet state are examined. From a Stern–Volmer type analysis it is concluded that vibrational relaxation of the initially formed vibrationally and electronically excited upper singlet state is via a multistage collisional mechanism. An activation energy of about 6 kcal/mole is reported for the unimolecular decomposition of the upper singlet state.  相似文献   

7.
The velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the halogen fragments in the photodissociation of bromobenzene and iodobenzene at 266 nm. With the aid of potential energy curve calculations by Lunell (Y. J. Liu, P. Persson, S. Lunell, J. Phys. Chem. A 2004 , 108, 2339–2345.), the Br fragmentation is proposed to stem from excitation of the lowest excited singlet state followed by predissociation along a repulsive triplet state. The slowed dissociation rate leads to production of the isotropic Br fragments and 93 % internal energy deposition. Only the ground state Br(2P3/2) is detectable. In contrast, when iodine is substituted, the iodine effect stabilizes the repulsive states associated with the I? C6H5 bond rupture and the subsequent dissociation channels become more complicated. 84 % of the iodobenzene molecules obtained follow a direct dissociation channel, while the remaining undergo a predissociative process. Both routes result in rapid dissociation with anisotropy parameters of 0.7±0.2 and 0.9±0.2 as well as 70 % and 26 % in the fractions of translational energy deposition, respectively. The relative quantum yields of I* and I are 0.35 and 0.65 and their related photodissociation pathways are discussed in detail.  相似文献   

8.
We have studied the charge‐transfer‐induced deactivation of nπ* excited triplet states of benzophenone derivatives by O2(3Σ), and the charge‐transfer‐induced deactivation of O2(1Δg) by ground‐state benzophenone derivatives in CH2Cl2 and CCl4. The rate constants for both processes are described by Marcus electron‐transfer theory, and are compared with the respective data for a series of biphenyl and naphthalene derivatives, the triplet states of which have ππ* configuration. The results demonstrate that deactivation of the locally excited nπ* triplets occurs by local charge‐transfer and non‐charge‐transfer interactions of the oxygen molecule with the ketone carbonyl group. Relatively large intramolecular reorganization energies show that this quenching process involves large geometry changes in the benzophenone molecule, which are related to favorable Franck‐Condon factors for the deactivation of ketone‐oxygen complexes to the ground‐state molecules. This leads to large rate constants in the triplet channel, which are responsible for the low efficiencies of O2(1Δg) formation observed with nπ* excited ketones. Compared with the deactivation of ππ* triplets, the non‐charge‐transfer process is largely enhanced, and charge‐transfer interactions are less important. The deactivation of singlet oxygen by ground‐state benzophenone derivatives proceeds via interactions of O2(1Δg) with the Ph rings.  相似文献   

9.
Irreversible photooxidation based on N–O bond fragmentation is demonstrated for N‐methoxyheterocycles in both the singlet and triplet excited state manifolds. The energetic requirements for bond fragmentation are studied in detail. Bond fragmentation in the excited singlet manifold is possible for ππ* singlet states with energies significantly larger than the N–O bond dissociation energy of ca 55 kcal mol?1. For the * triplet states, N–O bond fragmentation does not occur in the excited state for orbital overlap and energetic reasons. Irreversible photooxidation occurs in the singlet states by bond fragmentation followed by electron transfer. Irreversible photooxidation occurs in the triplet states via bimolecular electron transfer to the donor followed by bond fragmentation. Using these two sensitization schemes, donors can be irreversibly oxidized with oxidation potentials ranging from ca 1.6–2.2 V vs SCE. The corresponding N‐ethylheterocycles are characterized as conventional reversible photooxidants in their triplet states. The utility of these sensitizers is demonstrated by irreversibly generating the guanosine radical cation in buffered aqueous solution.  相似文献   

10.
An unusual temperature effect on the intensity of fluorescence of 9-carbonyl derivatives of anthracene is observed. This is interpreted in terms of an intersystem crossing process from the lowest excited singlet state Sππ* to the higher excited triplet state T*.  相似文献   

11.
A 4a,4b-dihydrophenanthrene-type cyclic photoisomer, the C isomer, is the major primary photoproduct of bianthrone in protic and aprotic polar solvents, and undergoes solvent-dependent secondary reactions, including the formation of dihydrohelianthrone in protic solvents. The C isomer was shown to be formed through the singlet excited state while the B isomer is formed via the triplet manifold.  相似文献   

12.
Abstract— The lowest excited singlet-state dissociation constants (pKSa) of bromosubstituted pyridines, quinolines, and isoquinolines were determined from the pH-dependent shifts in their electronic absorption spectra. The lowest excited triplet-state dissociation constants (pKTa) of bromosubstituted quinolines and 4-bromoisoquinoline were obtained from the shifts of the 0–0 phosphorescence bands measured in rigid aqueous solution at 77 K. The pKSa values indicate that the basicity of these brominated nitrogen heterocycles is increased in the lowest excited singlet state by 2 to 10 orders of magnitude as compared with the ground state. The pKTa values are found to be significantly different from the corresponding ground-state pKa values, indicating that the basicity of bromoquinolines is increased in the lowest excited triplet state by 1.7 to 3.0 pK units. The enhancement of the excited singlet-and triplet-state basicity of brominated nitrogen heterocycle derivatives as compared with the unsuhstituted parent compounds is attributed to the increased electron-donor conjugative interactions of the bromine atom pπ orbitals with π orbitals in the lowest excited singlet and triplet state.  相似文献   

13.
The first excited triplet state of DNA-intercalated ethidium bromide is produced with a quantum yield of 0.010.002 on irradiation at 532 nm. A difference extinction coefficient of 1.50.2103 m2 mol?1 is measured for the triplet state at 380 nm. Mercuric ions quench the first excited singlet state of DNA-intercalated ethidium bromide via induced spin orbit coupling to give an increased yield of ethidium triplet states. The same mercuric ion that quenches the singlet state then quenches the triplet state, via the same mechanism, with a rate constant of ca 3.5103 s?1. An upper limit for the rate of detachment of Hg2+ from its binding site in DNA may be fixed at ca 103 s?1.  相似文献   

14.
Velocity imaging technique combined with (2 + 1) resonance-enhanced multiphoton ionization (REMPI) has been used to detect the Br fragment in photodissociation of o-, m-, and p-bromofluorobenzene at 266 nm. The branching ratio of ground state Br(2P3/2) is found to be larger than 96%. Its translational energy distributions suggest that the Br fragments are generated via two dissociation channels for all the molecules. The fast route, which is missing in p-bromofluorobenzene detected previously by femtosecond laser spectroscopy, giving rise to an anisotropy parameter of 0.50-0.65, is attributed to a direct dissociation from a repulsive triplet T1(A' ') or T1(B1) state. The slow one with anisotropy parameter close to zero is proposed to stem from excitation of the lowest excited singlet (pi,pi*)state followed by predissociation along a repulsive triplet (pi,sigma*) state localized on the C-Br bond. For the minor product of spin-orbit excited state Br(2P1/2), the dissociating features are similar to those found in Br(2P3/2). Our kinetic and anisotropic features of decomposition obtained in m- and p-bromofluorobenzene are opposed to those by photofragment translational spectroscopy. Discrepancy between different methods is discussed in detail.  相似文献   

15.
Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin–orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the 2|Hso|S1>, 1|Hso|S1>, and 1|Hso|S0> spin–orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1→T1 population transfer is found to proceed at a rate of ≈107 s−1 in the isolated molecule.  相似文献   

16.
Room temperature experiments have measured the rate of electronic-to-vibrational energy transfer between spin—orbit excited Br(42P12) and HF. The Br* + HF quenching rate is very fast, (1.1 ± 0.2) × 106 s?1 torr?1, due to a near resonance between the spin—orbit splitting and the vibrational spacing. The majority of the Br* spin—orbit energy goes directly into HF vibration.  相似文献   

17.
The Br2 elimination channel is probed for 1,2‐C2H2Br2 in the B –X transition upon irradiation at 248 nm by using cavity ring‐down absorption spectroscopy (CRDS). The nascent vibrational population ratio of Br2(v=1)/Br2(v=0) is obtained to be 0.7±0.2, thus indicating that the Br2 fragment is produced in hot vibrational states. The obtained Br2 products are anticipated to result primarily from photodissociation of the ground‐state cis isomer via four‐center elimination or from cis/trans isomers via three‐center elimination, each mechanism involving a transition state that has a Br? Br distance much larger than that of ground‐state Br2. According to ab initio potential energy calculations, the pathways that lead to Br2 elimination may proceed either through the electronic ground state by internal conversion or through the triplet state by intersystem crossing. Temperature‐dependence measurements are examined, thereby supporting the pathway that involves internal conversion—which was excluded previously by using product translational spectroscopy (PTS). The quantum yield for the Br2 elimination reaction is determined to be 0.12±0.1, being substantially contributed by the ground‐state Br2 product. The discrepancy of this value from that (of 0.2) obtained by PTS may rise from the lack of measurements in probing the triplet‐state Br2 product.  相似文献   

18.
1,1‐Dilithioethylene is a prototypical carbon–lithium compound that is not known experimentally. All low‐lying singlet and triplet structures of interest were investigated by using high‐level theoretical methods with correlation‐consistent basis sets up to pentuple ζ. The coupled cluster methods adopted included up to full triple excitations and perturbative quadruples. In contrast to earlier studies that predicted the twisted C2v triplet to be the ground state, we found a peculiar planar Cs singlet ground state in the present research. The lowest excited electronic state of 1,1‐dilithioethylene, the twisted Cs triplet, was found to lie 9.0 kcal mol?1 above the ground state by using energy extrapolation to the complete basis set limit. For the planar Cs singlet and twisted Cs triplet states of 1,1‐dilithioethylene, anharmonic vibrational frequencies were reported on the basis of second‐order vibrational perturbation theory. The remarkably low (2050 cm?1) C?H stretching fundamental (the C?H bond near the bridging lithium) of the singlet state was found to have very strong infrared intensity. These highly reliable theoretical findings may assist in the long‐sought experimental identification of 1,1‐dilithioethylene. Using natural bond orbital analysis, we found that lithium bridging structures were strongly influenced by electrostatic effects. All carbon–carbon linkages corresponded to conventional double bonds.  相似文献   

19.
Adiabatic excitation energies, excited state geometries, excited state charges, bond orders and dipole moments have been obtained for HCN, CO2,H2CO, HFCO, F2CO, ethylene, trans-butadiene, furan, pyrrole and uracil using the SINDO1 semi-empirical method with configuration interaction. Our results generally agree with those ofab initio calculations and experiment satisfactorily. Geometry optimization is found to mix configurations differing in their allowedness in vertical excitation from the ground state, which in turn helps in the assignment of spectral transitions. TheV excited singlet state of trans-butadiene and various excited states of furan, pyrrole and uracil have been found to be appreciably non-planar. The single and double CC bonds are found to exchange positions due to the lowest triplet and singlet transitions of furan and pyrrole. The first triplet and first singlet transitions of uracil have been found to be of π-π* and π-σ* types respectively in agreement with recent experimental findings. On leave of absence from the Department of Physics, Banaras Hindu University, Varanasi-221005, India  相似文献   

20.
The SO(A → X) fluorescence resulting from the Ar(3P2,0)+SO2 reaction has been studied in a flowing afterglow system. Various reaction pathways for the formation of the SO(A) fragment have been considered. A linear surprisal analysis of the vibrational distributions indicates that the resonance excitation with subsequent predissociation of the intermediate bound state is responsible for the formation of SO(A). A significant fraction of the available energy has been found to be partitioned into translation. Because the predissociation of SO2 in the exit channel is dominating the reaction pathway in the Ar*+SO2 → Ar+O+SO(A) system, all the dynamical features can then be explained by the simple classical treatments on the dissociation of SO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号