首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we associate weak Gibbs measures for intermittent maps with non-Gibbsian weakly Gibbsian states in statistical mechanics in the sense of Dobrushin [4, 5]. We show a higher dimensional intermittent map of which the Sinai-Bowen-Ruelle measure is a weak Gibbs equilibrium state and a weakly Gibbsian state in the sense of Dobrushin admitting essential discontinuities in its conditional probabilities.  相似文献   

2.
Beginning with a system that is governed by an arbitrary time-dependent Hamiltonian, we exhibit an existence proof for a unitary generator that has an arbitrary initial value and yet contact transforms the representation to one governed by any given kinematically equivalent Hamiltonian. By choosing the initial value of the unitary operator to be unity, we are able to compare the behaviour of the same system under two different Hamiltonians and the same initial state vector. We thus are able to establish that the eventual physical states evolving from two distinct initial quantum state vectors will become practically indistinguishable under one of the two Hamiltonians if and only if they do so under the other. For the restricted class of systems for which one of the two Hamiltonians is a time-independent energy operator, and also generates equilibrium thermodynamics, then the condition for merging under the time-dependent Hamiltonian is the same as under the time-independent one. The two states must have the same initial energy. As a special case of the above, we choose the time-independent Hamiltonian to be the relativistic energy measuring operator for the time-dependent Hamiltonian, as associated with the chosen initial time. If the system under the time-dependent Hamiltonian is such that its relativistic energy measuring operator for any fixed time generates equilibrium thermodynamics, then we are led rigorously to the conclusion that the instantaneous relativistic energy for the system under the time-dependent Hamiltonian is simply a well-defined function of time and depends only on the initial energy and not on any other initial conditions. For a composite system that is of the above type, and in addition consists of one very small system in contact with a very large one, which is called a generalized reservoir, we consider a specific initial physical state for the large system, and various states for the small one. The eventual dynamic state of the composite system is essentially independent of the initial state of the small system which has almost no influence on the total composite energy. Hence the eventual dynamic state of the small system is shown rigorously to be independent of its initial state. For a forced system with a time-dependent Hamiltonian, we discuss the assignment of equilibrium thermodynamic potentials to a representation with a time-independent Hamiltonian. We discuss the concept of a process under a time-dependent Hamiltonian. Such a process is a natural generalization of the static and quasi-static processes. Also, we verify all of the theory with both general and specific examples of electromagnetic interactions.  相似文献   

3.
The structure of the set of all translation invariant equilibrium states is determined for all temperatures, for which the free energy is differentiable. Models with several phase transitions are discussed rigorously.  相似文献   

4.
In the algebraic formulation the thermodynamic pressure, or free energy, of a spin system is a convex continuous functionP defined on a Banach space of translationally invariant interactions. We prove that each tangent functional to the graph ofP defines a set of translationally invariant thermodynamic expectation values. More precisely each tangent functional defines a translationally invariant state over a suitably chosen algebra of observables, i. e., an equilibrium state. Properties of the set of equilibrium states are analysed and it is shown that they form a dense set in the set of all invariant states over . With suitable restrictions on the interactions, each equilibrium state is invariant under time-translations and satisfies the Kubo-Martin-Schwinger boundary condition. Finally we demonstrate that the mean entropy is invariant under time-translations.  相似文献   

5.
6.
The no-pumping theorem refers to a Markov system that holds the detailed balance, but is subject to a time-periodic external field. It states that the time-averaged probability currents nullify in the steady periodic (Floquet) state, provided that the Markov system holds the Arrhenius transition rates. This makes an analogy between features of steady periodic and equilibrium states, because in the latter situation all probability currents vanish explicitly. However, the assumption on the Arrhenius rates is fairly specific, and it need not be met in applications. Here a new mechanism is identified for the no-pumping theorem, which holds for symmetric time-periodic external fields and the so called destination rates. These rates are the ones that lead to the locally equilibrium form of the master equation, where dissipative effects are proportional to the difference between the actual probability and the equilibrium (Gibbsian) one. The mechanism also leads to an approximate no-pumping theorem for the Fokker-Planck rates that relate to the discrete-space Fokker-Planck equation.  相似文献   

7.
First it is shown that each extremal equilibrium state is representable as limit of Gibbs states in finite volumes, and that an analogous statement holds for extremal invariant equilibrium states. Secondly we prove that for negative pair interactions only one equilibrium state exists which minimizes (resp. maximizes) the particle density, but that in general there are more than two extremal invariant equilibrium states with the same particle density. In this context, periodic interactions are studied.  相似文献   

8.
《Annals of Physics》1987,176(2):183-217
In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using convex analysis one can give a mathematically rigorous treatment of several basic aspects of equilibrium thermodynamics. On the basis of a fundamental convexity property implied by the second law, the following topics are discussed: thermodynamic stability, transformed fundamental functions (such as the Gibbs free energy), and the existence and uniqueness of possible final equilibrium states of closed composite thermodynamic systems. It is shown that a standard mathematical characterization of thermodynamic stability (involving a positive definiteness property) is sufficient but in fact not necessary for the physically superior convexity characterization of thermodynamic stability. Furthermore, it is found that functions such as the Gibbs free energy can be rigorously and globally defined using convex conjugation instead of Legendre transformation. Another result desribed in this paper is that equilibrium thermodynamics cannot always uniquely predict possible final equilibrium states of closed composite thermodynamic systems.  相似文献   

9.
In this study, we reveal the difference between Woods-Saxon(WS) and Generalized Symmetric WoodsSaxon(GSWS) potentials in order to describe the physical properties of a nucleon, by means of solving Schr¨odinger equation for the two potentials. The additional term squeezes the WS potential well, which leads an upward shift in the spectrum, resulting in a more realistic picture. The resulting GSWS potential does not merely accommodate extra quasi bound states, but also has modified bound state spectrum. As an application, we apply the formalism to a real problem,an α particle confined in Bohrium-270 nucleus. The thermodynamic functions Helmholtz energy, entropy, internal energy,specific heat of the system are calculated and compared for both wells. The internal energy and the specific heat capacity increase as a result of upward shift in the spectrum. The shift of the Helmholtz free energy is a direct consequence of the shift of the spectrum. The entropy decreases because of a decrement in the number of available states.  相似文献   

10.
We discuss some basic aspects of the dynamics of a homogenous Fermi gas in a weak random potential, under negligence of the particle pair interactions. We derive the kinetic scaling limit for the momentum distribution function with a translation invariant initial state and prove that it is determined by a linear Boltzmann equation. Moreover, we prove that if the initial state is quasifree, then the time evolved state, averaged over the randomness, has a quasifree kinetic limit. We show that the momentum distributions determined by the Gibbs states of a free fermion field are stationary solutions of the linear Boltzmann equation; this includes the limit of zero temperature.  相似文献   

11.
We investigate the free energy relation for a system contacting with a non-Markovian heat bath and find that the validity of the relation sensitively depends on the non-Markovian memory effect, which is especially related to the initial preparation effect. This memory effect drives the statistical distribution of the system out of the initial preparation, even if the system starts from an equilibrium state. This leads to the violation of the free energy relation. A possible way of eliminating this memory effect is proposed.  相似文献   

12.
Under the assumption of an identity determining the free energy of a state of a statistical mechanical system relative to a given equilibrium state by means of the relative entropy, it is shown: first, that there is in any physically definable convex set of states a unique state of minimum free energy measured relative to a given equilibrium state; second, that if a state has finite free energy relative to an equilibrium state, then the set of its time translates is a weakly relatively compact set; and third, that a unique perturbed equilibrium state exists following a change in Hamiltonian that is bounded below.  相似文献   

13.
We investigate the free energy relation for a system contacting with a non-Markovian heat bath and find that the validity of the relation sensitively depends on the non-Markovian memory effect, which is especially related to the initial preparation effect. This memory effect drives the statistical distribution of the system out of the initial preparation, even if the system starts from an equilibrium state. This leads to the violation of the free energy relation. A possible way of eliminating this memory effect is proposed.  相似文献   

14.
We use the stochastic limit technique to predict a new phenomenon concerning a two-level atom with degenerate ground state interacting with a quantum field. We show, that the field drives the state of the atom to a stationary state, which is non-unique, but depends on the initial state of the system through some conserved quantities. This non uniqueness follows from the degeneracy of the ground state of the atom, and when the ground subspace is two-dimensional, the family of stationary states will depend on a one-dimensional parameter. Only one of the stationary states in this family is a pure state and it coincides with the known trapped state. This means that by controlling the initial state (input) we can control the final state (output). The quantum Markov semigroup obtained in the limit admits an invariant pure state, but it is not true that all the extremal invariant states are pure. This is an interesting phenomenon also from mathematical point of view and its meaning will be discussed in a future paper. PACS numbers: 31.15.-p, 31.15.Gy, 32.80.Pj, 32.80.Qk  相似文献   

15.
The orientational dynamics of rod-like particles with permanent (electric or magnetic) dipole moments in a plane Couette shear flow is investigated using mesoscopic relaxation equations combined with a generalized Landau free energy. The free energy contribution due to the coupling between average alignment and dipole orientation is derived on a microscopic basis. Numerical results of the resulting eight-dimensional dynamical system are presented for the case of longitudinal dipoles and thermodynamic conditions where the equilibrium state is a (polar or non-polar) nematic. Solution diagrams reveal presence of a large variety of periodic, transient chaotic, and chaotic dynamic states of the average alignment and dipole moment, respectively, appearing as a function of Deborah number and tumbling parameter. Compared to rods without dipoles we observe a significant preference of out-of-plane kayaking-tumbling states and, generally, a higher sensitivity to the initial conditions including bistability. We also demonstrate that the average (electric) dipole moment characterizing most of the observed states yields electrodynamic (magnetic) fields of measurable strength.  相似文献   

16.
We define 1D Volkov states as solutions of the one-dimensional Dirac equation in a time dependent electric field, similar to the Volkov solutions in the three dimensional case. They are eigenspinors of the momentum operator and reduce in the absence of the field to free solutions of positive or negative energy. Then we add a time independent attractive Gausssian potential and, by integrating the Dirac equation for a laser pulse of Gaussian shape, we determine the state which coincides initially with the ground state of the system in the absence of the electric field. Our main objective is the study of the population dynamics on the Volkov states during the pulse action. For different values of the laser pulse intensity and two values of the potential depth, we find that the Volkov states which evolve from free solutions of negative energy are practically not populated, in contrast to the population on free negative energy states.  相似文献   

17.
We study the branches of equilibrium states of rigid polymer rods with the Onsager excluded volume potential in two-dimensional space. Since the probability density and the potential are related by the Boltzmann relation at equilibrium, we represent an equilibrium state using the Fourier coefficients of the Onsager potential. We derive a non-linear system for the Fourier coefficients of the equilibrium state. We describe a procedure for solving the non-linear system. The procedure yields multiple branches of ordered states. This suggests that the phase diagram of rigid polymer rods with the Onsager potential has a more complex structure than that with the Maier-Saupe potential. A study of free energy indicates that the first branch of ordered states is stable while the subsequent branches are unstable. However, the instability of the subsequent branches does not mean they are not interesting. Each of these unstable branches, under certain external potential, can be made metastable, and thus may be observed.  相似文献   

18.
19.
We consider a model for a single molecule with a large frozen spin sandwiched in between two BCS superconductors at equilibrium, and show that this system has a π junction behavior at low temperature. The π shift can be reversed by varying the other parameters of the system, e.g., temperature or the position of the quantum dot level, implying a controllable π junction with novel application as a Josephson current switch. We show that the mechanism leading to the π shift can be explained simply in terms of the contributions of the Andreev bound states and of the continuum of states above the superconducting gap. The free energy for certain configuration of parameters shows a bistable nature, which is a necessary pre-condition for achievement of a qubit.  相似文献   

20.
For quantum spin systems it is known that for a suitable space of potentials the equilibrium states areW*-dense in the set of all translation invariant states. The problem discussed in this paper is how to recognize such equilibrium states and how to find the corresponding potential. A necessary and sufficient condition for a state to be an equilibrium state for some potential is given in Sect. 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号