首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified multiplier method for optimization problems with equality constraints is suggested and its application to constrained optimal control problems described. For optimal control problems with free terminal time, a gradient descent technique for updating control functions as well as the terminal time is developed. The modified multiplier method with the simplified conjugate gradient method is used to compute the solution of a time-optimal control problem for a V/STOL aircraft.  相似文献   

2.
This paper develops a numerical technique to solve a class of zero-sum differential games with singular control. By using this technique and the application of inverse systems, a near-optimal closed-loop technique is developed to generate a numerical solution to this class of problems.  相似文献   

3.
4.
This article presents a methodology for exploring the solution surface in a class of multicriteria infinite-horizon closed-loop optimal control problems with bounded disturbances and minimax objectives. The maximum is taken with respect to both time and all sequences of disturbances; that is, the value of a criterion is the maximal stage cost for the worst possible sequence of disturbances. It is assumed that the system and the cost functions are stationary. The proposed solution method is based on reference point approach and inverse mapping from the space of objectives into the space of control policies and their domains in state space.  相似文献   

5.
The multiplier method of Hestenes and Powell applied to convex programming   总被引:1,自引:0,他引:1  
For nonlinear programming problems with equality constraints, Hestenes and Powell have independently proposed a dual method of solution in which squares of the constraint functions are added as penalties to the Lagrangian, and a certain simple rule is used for updating the Lagrange multipliers after each cycle. Powell has essentially shown that the rate of convergence is linear if one starts with a sufficiently high penalty factor and sufficiently near to a local solution satisfying the usual second-order sufficient conditions for optimality. This paper furnishes the corresponding method for inequality-constrained problems. Global convergence to an optimal solution is established in the convex case for an arbitrary penalty factor and without the requirement that an exact minimum be calculated at each cycle. Furthermore, the Lagrange multipliers are shown to converge, even though the optimal multipliers may not be unique.This work was supported in part by the Air Force Office of Scientific Research under Grant No. AF-AFOSR-72-2269.  相似文献   

6.
Control of the vibration modes become critical when one wants to push the state of the art with faster, lighter, and more accurate flexible link. There are three steps which are necessary for the control of the flexible link. First, a good design based model of the plant must exist. Second, a good controller which is also realizable must be designed. Third, input to the controller must be constructed using knowledge of the system dynamic response. In this paper, involving a complete control strategy, pertaining to design based model, control, and dealing with the shaping of system input is presented. In Part I, a single-input single-output transcendental transfer function, pole-zero pattern, controllability, observability, and system type for distributed parameter system is illustrated by application to feedback control of an Euler-Bernoulli beam. The eigenfunctions, orthogonality condition, and mode summation method have been investigated in order to get the system analytical solution. A new control scheme, which depends on the pole-zero plot of the infinite-dimensional system and uses a realizable actuator and sensor without involving truncation of the higher-frequency modes, shows that good stability, robustness, and efficient tracking property can be achieved by moving all the poles of the corresponding closed-loop system further into the left half-plane.  相似文献   

7.
For a linear system (C,A,B) with integral quadratic cost, an optimal control problem is presented which has as its solution an output feedback control. The output feedback chosen ensures that the closed-loop cost is not worse than the open-loop cost for any initial condition, which is not guaranteed by the standard optimization method for finding output feedback (optimization with respect to the feedback matrix of an average over initial conditions of the closed-loop cost). The most severe restriction involved is thatker[C]? R[B]. Finite- and infinite-time cases are discussed.  相似文献   

8.
We consider an anti-windup compensation method ensuring the convergence of the closed-loop system for a class of reference signals. An application of the method to an aircraft flight control problem is shown.  相似文献   

9.
Natalia Balashevich 《PAMM》2005,5(1):733-734
A method of on-line constructing an optimal feedback control for nonlinear systems with bang-bang optimal control is suggested. The realization of the algorithm of constructing a closed-loop solution is oriented on fast corrections of optimal open-loop control subject to small variations of initial state. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper, we consider a linear–quadratic stochastic two-person nonzero-sum differential game. Open-loop and closed-loop Nash equilibria are introduced. The existence of the former is characterized by the solvability of a system of forward–backward stochastic differential equations, and that of the latter is characterized by the solvability of a system of coupled symmetric Riccati differential equations. Sometimes, open-loop Nash equilibria admit a closed-loop representation, via the solution to a system of non-symmetric Riccati equations, which could be different from the outcome of the closed-loop Nash equilibria in general. However, it is found that for the case of zero-sum differential games, the Riccati equation system for the closed-loop representation of an open-loop saddle point coincides with that for the closed-loop saddle point, which leads to the conclusion that the closed-loop representation of an open-loop saddle point is the outcome of the corresponding closed-loop saddle point as long as both exist. In particular, for linear–quadratic optimal control problem, the closed-loop representation of an open-loop optimal control coincides with the outcome of the corresponding closed-loop optimal strategy, provided both exist.  相似文献   

11.
The method of open-loop control packages is a tool for stating the solvability of guaranteed closed-loop control problems under incomplete information on the observed states. In this paper, a solution method is specified for the problem of guaranteed closed-loop guidance of a linear control system to a convex target set at a prescribed point in time. It is assumed that the observed signal on the system’s states is linear and the set of its admissible initial states is finite. It is proved that the problem under consideration is equivalent to the problem of open-loop guidance of an extended linear control system to an extended convex target set. Using a separation theorem for convex sets, we derive a solvability criterion, which reduces to solving a finite-dimensional optimization problem. An illustrative example is considered.  相似文献   

12.
The paper presents a metaheuristic method for solving fuzzy multi-objective combinatorial optimization problems. It extends the Pareto simulated annealing (PSA) method proposed originally for the crisp multi-objective combinatorial (MOCO) problems and is called fuzzy Pareto simulated annealing (FPSA). The method does not transform the original fuzzy MOCO problem to an auxiliary deterministic problem but works in the original fuzzy objective space. Its goal is to find a set of approximately efficient solutions being a good approximation of the whole set of efficient solutions defined in the fuzzy objective space. The extension of PSA to FPSA requires the definition of the dominance in the fuzzy objective space, modification of rules for calculating probability of accepting a new solution and application of a defuzzification operator for updating the average position of a solution in the objective space. The use of the FPSA method is illustrated by its application to an agricultural multi-objective project scheduling problem.  相似文献   

13.
This paper considers the problem of positive real control for two-dimensional (2-D) discrete delayed systems in the Fornasini–Marchesini second local state-space model. Attention is focused on the design of dynamic output feedback controllers, which guarantee that the closed-loop system is asymptotically stable and the closed-loop transfer function is extended strictly positive real. We first present a sufficient condition for extended strictly positive realness of 2-D discrete delayed systems. Based on this, a sufficient condition for the solvability of the positive real control problem is obtained in terms of a linear matrix inequality (LMI). When the LMI is feasible, an explicit parametrization of a desired output feedback controller is presented. Finally, we provide a numerical example to demonstrate the application of the proposed method.  相似文献   

14.
This paper establishes the global existence and high-gain stabilization of a nonlinear axially moving beam with control input at the free boundary. A high-gain controller based on the transverse velocity feedbacks of the moving beam at the free end is designed. The existence and uniqueness of the solution depending on the initial values continuously for the resulting closed-loop system are established by invoking the Faedo–Galerkin approximation approach. Then constructing a novel energy-like function, the explicit exponential decay rate of the closed-loop system is obtained via a generalized Gronwall-type integral inequality.  相似文献   

15.
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton–Jacobi–Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rössler system and synchronization of the hyperchaotic Rössler system.  相似文献   

16.
Feedback control in LQCP with a terminal inequality constraint   总被引:1,自引:0,他引:1  
This paper considers the linear-quadratic control problem (LQCP) for systems defined by evolution operators with a terminal state inequality constraint. It is shown that, under suitable assumptions, the optimal control exists, is unique, and has a closed-loop structure. The synthesis of the feedback control requires one to solve the integral Riccati equation for the unconstrainted LQCP and a linear integral equation whose solution depends on a real parameter satisfying an additional condition.This work was completed while the author was visiting the Control Theory Centre, University of Warwick, Coventry, England.  相似文献   

17.
This paper introduces a new approach to robust model predictive control (MPC) based on conservative approximations to semi-infinite optimization using linear matrix inequalities (LMIs). The method applies to problems with convex quadratic costs, linear and convex quadratic constraints, and linear predictive models with bounded uncertainty. If the MPC optimization problem is feasible at the initial control step (the first application of the MPC optimization), it is shown that the MPC optimization problems will be feasible at all future time steps and that the controlled system will be closed-loop stable. The method is illustrated with a solenoid control example. The authors thank the anonymous reviewers for suggestions that improved the presentation of this work. The work was supported in part by the EPRI/DoD Complex Interactive Networks/Systems Initiative under Contract EPRI-W08333-05 and by the US Army Research Office Contract DAAD19-01-1-0485.  相似文献   

18.
Coordinating the distribution of ammunition and scheduling strategic transportation resources during military contingency operations is a complex process. This paper presents a large-scale optimization-based planning method that uses column generation to schedule the movement of ammunition and transportation resources through a time-space network representation of the distribution system. The optimization-based planner is initialized using a feasible solution generated by a heuristic planning method. Both the optimization-based planner and the heuristic planner generate plans with improved ship utilization and delivery tardiness values as compared to plans generated using current planning techniques. In addition, the heuristic planner is implemented within a closed-loop planning and control framework, and is used to generate plans on a rolling horizon basis.  相似文献   

19.
Finite element analysis has become an essential tool to estimate structural responses under static and dynamic loads. However, there are a lot of uncertainties in structural properties. For this reason, in many cases, the outcomes of the theoretical and experimental modal analyses do not match. Therefore, the analytical models of the structures need to be updated according to the experimental test results. The commonly used method to get parameters for model updating is experimental modal analysis which provides structural dynamic characteristic (natural frequencies, mode shapes and modal damping ratio). There are many methods available for the updating process. This study addresses an updating algorithm to modify the numerical models by using the design points for unknown structural properties. The proposed method aims to minimize the difference between the analytical and experimental natural frequencies by updating uncertain parameters for each mode and combine them to get an optimum solution. The algorithm is tested on a column and a 2D frame models. These models are investigated by taking the connection rigidity and elasticity modulus as unknown parameters. It is observed that the proposed algorithm gives better results for unknown structural properties compared to the initial values.  相似文献   

20.
The robust non-fragile guaranteed cost control problem is studied in this paper for a class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号