首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and 6.67×1056.67\times 10^{5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.  相似文献   

2.
A study of the fluctuating wall pressure beneath a 2-d turbulent boundary layer was conducted in a water tunnel with Reynolds numbers, based on momentum thickness, ranging between 2,100 and 4,300. The boundary layer was perturbed with steady mild suction to assess the effect of upstream suction on the fluctuating wall pressure measured downstream of the suction slit. Wall pressure signatures were captured using a custom-fabricated piezo-ceramic array with d + values ranging between 64 and 107. Likewise, the velocity field was measured with a laser Doppler velocimeter with l + values ranging between 4.0 and 6.7 for the lowest and highest Re θ investigated. Estimates of the wall pressure spectra revealed a noticeable hydrodynamic peak that scaled reasonably well with outer variables and with an average convective speed of 75 % of the free stream velocity (based on unconditionally sampled pressure time series). Two boundary layer suction control cases were studied corresponding to suction rates of less then 30 % of the boundary layer momentum. The findings reveal how only modest amounts of suction are needed to reduce upwards 50–60 % of the hydrodynamic ridge.  相似文献   

3.
The structure and heat transfer in a turbulent separated flow in a suddenly expanding channel with injection (suction) through a porous wall are numerically simulated with the use of two-dimensional averaged Navier–Stokes equations, energy equations, and v 2f turbulence model. It is shown that enhancement of the intensity of the transverse mass flux on the wall reduces the separation region length in the case of suction and increases the separation region length in the case of injection up to complete boundary layer displacement. The maximum heat transfer coefficient as a function of permeability is accurately described by the asymptotic theory of a turbulent boundary layer.  相似文献   

4.
It is well known that injection/suction (transpiration) through a perforated surface is an efficient way of influencing the characteristics of a turbulent boundary layer. Injection application creates a thicker boundary layer on a flat plate and it thus decreases drag. In aeronautical applications, suction is frequently used to delay boundary layer separation. This paper presents an experimental study on the effects of uniform injection through one perforated surface of a square cylinder on the pressure distribution and drag coefficient in a two-dimensional turbulent flow. For this purpose, surface pressure measurements around a square cylinder have been performed at three different Reynolds numbers in a wind tunnel. The parameters taken into account were injection rate, position of perforated surface (i.e., front, top, and rear), and pressure coefficient and drag coefficient. The results show that variation in pressure coefficient around the square cylinder and drag coefficient were influenced by the position of perforated surface and by injection rate.  相似文献   

5.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In the present study, numerical investigations were performed with optimisation to determine efficient non-uniform suction profiles to control the flow around a circular cylinder in the range of Reynolds numbers 4 < Re < 188.5. Several objectives were explored, namely the minimisation of the separation angle, total drag, and pressure drag. This was in an effort to determine the relationships between the characteristics of the uncontrolled flow and the parameters of the optimised suction control. A variety of non-uniform suction configurations were implemented and compared to the benchmark performance of uniform suction. It was determined that the best non-uniform suction profiles consisted of a distribution with a single locus and compact support. The centre of suction on the cylinder surface for the optimised control, and the quantity of suction necessary to achieve each objective, varied substantially with Reynolds number and also with the separation angle of the uncontrolled flows. These followed predictable relationships. Surprisingly, the location of optimised suction to eliminate separation did not follow the separation point as it moved with Re, but rather it moved in opposition to it towards the trailing edge of the cylinder. Non-uniform suction profiles were much more efficient at eliminating boundary layer separation, requiring the removal of less than half the volume of fluid as uniform control to achieve the same objective. Regardless of the method of control, less net suction was needed to minimise total drag than to eliminate separation, except at low Re. The results suggest that controlling the dynamic aspects of the flow has the most impact for reducing drag. This reinforces the usefulness of other studies that focus on the elimination of vortex shedding. The results show that the balance of drag components must be an important consideration when designing flow control systems and that, when done appropriately, substantial improvement can be seen in the flow characteristics.  相似文献   

8.
The possibility of controlling the stability of a nonstationary boundary layer on the attachment line of a high-aspect-ratio swept wing by means of periodic variations of the surface temperature or the gas suction velocity at sub- or supersonic free-stream velocities is considered. The characteristic time scale of the variations of the surface temperature or the gas suction velocity on the attachment line is assumed to be equal to the characteristic aerodynamic time. On this assumption the stability characteristics of quasisteady attachment-line boundary layer flows are studied, the minimum values of the critical Reynolds numbers Re* of loss of stability are determined as functions of the temperature and the suction velocity, and examples of the periodic dependence of the surface temperature and the suction velocity for which, in the case of nonstationary flow, the time-average values of Re* exceed the analogous values for the steady-state boundary layer are constructed.  相似文献   

9.
Micro-bubble drag reduction experiments were conducted in a turbulent water channel flow. Compressed nitrogen was used to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section. Gas and bubbly mixtures were injected into a turbulent boundary layer (TBL), and the resulting friction drag was measured downstream of the injector. Injection into tap water, a surfactant solution (Triton X-100, 20 ppm), and a salt-water solution (35 ppt) yielded bubbles of average diameter 476, 322 and 254 μm, respectively. In addition, lipid stabilized gas bubbles (44 μm) were injected into the boundary layer. Thus, bubbles with d + values of 200 to 18 were injected. The results indicate that the measured drag reduction by micro-bubbles in a TBL is related strongly to the injected gas volumetric flow rate and the static pressure in the boundary layer, but is essentially independent of the size of the micro-bubbles over the size range tested.  相似文献   

10.
Pramod Kumar Yadav 《Meccanica》2013,48(7):1607-1622
This paper concerns the Slow Motion of a Porous Cylindrical Shell in a concentric cylindrical cavity using particle-in-cell method. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid in their stream function formulations are used. The hydrodynamic drag force acting on each porous cylindrical particle in a cell and permeability of membrane built up by cylindrical particles with a porous shell are evaluated. Four known boundary conditions on the hypothetical surface are considered and compared: Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-Morse’s condition). Some previous results for hydrodynamic drag force and dimensionless hydrodynamic permeability have been verified. Variation of the drag coefficient and dimensionless hydrodynamic permeability with permeability parameter σ, particle volume fraction γ has been studied and some new results are reported. The flow patterns through the regions have been analyzed by stream lines. Effect of particle volume fraction γ and permeability parameter σ on flow pattern is also discussed. In our opinion, these results will have significant contributions in studying, Stokes flow through cylindrical swarms.  相似文献   

11.
Laser Doppler velocity measurements are carried out in a turbulent boundary layer subjected to concentrated wall suction (through a porous strip). The measurements are taken over a longitudinal distance of 9× the incoming boundary layer thickness ahead of the suction strip. The mean and rms velocity profiles are affected substantially by suction. Two-point measurements show that the streamwise and wall-normal autocorrelations of the streamwise velocity are reduced by suction. It is found that suction alters the redistribution of the turbulent kinetic energy k between its components. Relative to the no-suction case, the longitudinal Reynolds stress contributes more to k than the other two normal Reynolds stresses; in the outer region, its contribution is reduced which suggests structural changes in the boundary layer. This is observed in the anisotropy of the Reynolds stresses, which depart from the non-disturbed boundary layer. With suction, the anisotropy level in the near-wall region appears to be stronger than that of the undisturbed layer. It is argued that the mean shear induced by suction on the flow is responsible for the alteration of the anisotropy. The variation of the anisotropy of the layer will make the development of a turbulence model quite difficult for the flow behind suction. In that respect, a turbulence model will need to reproduce well the effects of suction on the boundary layer, if the model is to capture the effect of suction on the anisotropy of the Reynolds stresses.  相似文献   

12.
Effects of Gurney Flaps on a NACA0012 Airfoil   总被引:4,自引:0,他引:4  
Experimental measurements of surface pressure distributions and wake profiles were obtained for a NACA0012 airfoil to determine the lift, drag, and pitching-moment coefficients for various configurations. The addition of a Gurney flap increased the maximum lift coefficient from 1.37 to 1.74, however there was a drag increment at low-to-moderate lift coefficient. In addition, the boundary layer profile measurements were taken using a rake of total pressure probes at the 90% chord location on the suction side. The effective Gurney flap height is about 2% of chord length, which provides the highest lift-to-drag ratio among the investigated configurations when compared with the clean NACA0012 airfoil. In this case, the device remains within the boundary layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Measurements of the drag caused by turbulent boundary layer mean wall shear stress on cylinders at small angles of attack and high length Reynolds numbers (8×106<ReL<6×107) are presented. The use of a full-scale, high-speed towing tank enabled the development of turbulent boundary layers on cylinders made of stainless steel, aluminum, titanium, and polyvinyl chloride. The diameter of all cylinders in this experiment was 12.7 mm; two cylinder lengths, 3.05 m and 6.10 m, were used, corresponding to aspect ratio values L/a=480 and 960, respectively. Materials of various densities were towed at critical angles, resulting in linear cylinder geometry for tow speeds ranging from 2.6 m/s to 20.7 m/s and angles between 0° and 12°. Towing angles were measured with digital photography, and streamwise drag was measured with a strut-mounted load cell at the tow point. The measured tangential drag was very sensitive to small increases in angle at all tow speeds. A momentum thickness length scale is proposed to scale the tangential drag coefficient. The effects of the cross-flow resulting from the small angles of tow have a significant effect on the tangential drag coefficient values. A scaling for the orthogonal force on the cylinders was determined and provides a correction to published normal drag coefficient values for pure cross-flow. The presence of the axial turbulent boundary layer has a significant effect on these orthogonal forces.  相似文献   

14.
The hydrodynamic stability of a dilute disperse mixture flow in a quasi-equilibrium region of a boundary layer with a significantly nonuniform particle concentration profile is investigated. The mixture is described by a two-fluid model with an incompressible viscous carrier phase. In addition to the Stokes drag, the Saffman lifting force is taken into account in the interphase momentum exchange. On the basis of a numerical solution of the boundary-value problem for a modified Orr-Sommerfeld equation, neutral stability curves are analyzed and the dependence of the critical Reynolds number on the governing parameters is studied. It is shown that taking into account the particle concentration nonuniformity in the main flow and the Saffman lifting force significantly changes the stability limits of the two-phase laminar boundary layer flow. The effect of these factors on the boundary layer stability is considered for the first time.  相似文献   

15.
Reducing frction drag and delaying the laminar-turbulent transition are topical problems of modern aerodynamics. A series of methods of delaying transition are known: creation of a favorable pressure gradient, boundary layer suction, surface cooling, etc., [1, 2]. Here, the possibility of delaying transition by means of volume heat supply to the boundary layer is considered. For this purpose, a subsonic compressible laminar boundary layer with volume energy supply is subjected to a stability analysis. The nonself-similar flow in the boundary layer is determined by means of a finite-difference marching method. The flow stability characteristics are calculated on the basis of the linear theory in the plane-parallel approximation. It is shown that even on a thermally insulated surface volume energy supply to the flow leads to significant flow stabilization and reduced perturbation growth rates.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 62–67, March–April, 1988.  相似文献   

16.
The effects of localised suction applied through a pair of porous wall strips on a turbulent boundary layer have been quantified through the measurements of mean velocity and Reynolds stresses. The results indicate that the use of second strip extends the pseudo-relaminarisation zone but also reduces the overshoot in the longitudinal and normal r.m.s. velocities. While the minimum r.m.s. occurs at x/δo=3.0 (one strip) and x/δo=12 (two strips), the reduction observed for the latter case is larger. Relative to no suction, the turbulence level is modified by suction and the effect is enhanced with double suction. This increased effectiveness reflects the fact that the second strip acts on a boundary layer whose near-wall active motion has been seriously weakened by the first strip.  相似文献   

17.
The velocity and heat transfer fields near a vertical permeable surface with simultaneous convection are investigated. A solution is found for the boundary layer equations with known laws of surface temperature and flow velocity change. The transformed boundary layer equations contain the parameter G/R2, which determines the effect of free convection on friction and heat transfer for constrained motion. Calculations of friction and heat transfer as functions of draft (suction) with simultaneous convection are presented.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 96–100, March–April, 1973.  相似文献   

18.
Suction on a turbulent boundary layer is applied through a narrow strip in order to understand the effects suction can have on the boundary layer development and turbulent structures in the flow. Detailed two-component laser Doppler velocimetry (LDV) and laser-induced fluorescence (LIF) based measurements have been undertaken in regions close to the suction strip and further downstream. The region close to the strip involves a flow reversal accompanied by a change in sign for the Reynolds shear stress and strong gradients in the flow variables. The mean streamwise velocity after suction remains larger than its corresponding no-suction value. Relative to the no-suction case, the velocity fluctuations first decrease with suction followed by a slow recovery which may involve a slight overshoot. LIF visualizations indicate that compared to the no-suction case, the low-speeds streaks stay closer to the wall and exhibit a smaller amount of spanwise and wall-normal oscillations with suction. The visualization results are consistent with two-point velocity correlation measurements. The streamwise and spanwise correlation measurements indicate that the structures are disrupted or removed from the boundary layer due to suction suggesting that the original boundary layer has been strongly influenced by suction. The results are explained by the development of a new inner layer that forms downstream of the suction strip.  相似文献   

19.
The effect on the aerodynamic drag of the real properties of the gas in the shock layer around pyramidal star-shaped bodies (the viscosity, the displacement thickness of the boundary layer, its separation under the influence of the inner shocks) is considered. It is shown that the models for calculating the total drag of star-shaped bodies which do not take into account the displacement thickness of the boundary layer are applicable only at low supersonic free-stream velocities (M < 3). A model of the boundary layer displacement thickness is proposed and tested over a broad range of variation of the parameters that determine the geometry of the pyramidal bodies for high supersonic or hypersonic speeds. A comparison with the experimental data shows that the calculation procedure adequately reflects the results of experiments on the aerodynamic drag of star-shaped bodies in cases in which the inner shocks in the shock layer do not lead to boundary layer separation and can be used in optimization problems.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 57–69, January–February, 1993.  相似文献   

20.
A new approach on MHD natural convection boundary layer flow from a finite flat plate of arbitrary inclination in a rotating environment, is presented. This problem plays a significant role on boundary layer flow control. It is shown that taking into account the pressure rise region at the leading edge of the plate leads to avoid separation and the back flow is reduced by the strong magnetic field. It is also shown that the frictional drag at the leading edge of the plate is reduced when the inclination angle α=π/4. In the case of isothermal flat plate, the bulk temperature becomes identical for any value of Gr (Grashof number) when the value of M 2 (Hartmann number) and K 2 (rotation parameter) are kept fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号