首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative analysis of the IR and Raman spectra of aminoglutethimide (AG) dissolved in CCl4, CHCl3 and CH3CN was performed. Most of the absorption bands were assigned to characteristic group vibrations with the use of the IR and Raman spectra of deuterated AG, glutethimide, N-methyl glutethimide and glutarimide. The AG samples very weakly interacting with the environment were studied with the use of the Ar matrix isolation IR spectra. For comparison, the IR and Raman spectra of the crystalline samples formed by hydrogen-bonded AG molecules were recorded. The spectra were analyzed also in terms of normal modes and the harmonic approximation with the use of the ab initio restricted Hartree-Fock theory. It was found that increasing the solute concentration in CCl4 and CHCl3 leads to formation of the autoassociates. In CH3CN the solute–solvent AG–CH3CN dimers occur. Possible structures of the associates were theoretically studied on the model systems: the centrosymmetric glutarimide dimer and the linear AG–CH3CN dimer. By a comparison of the theoretical and experimental spectra we were able to identify several peaks originating from the solute–solvent interactions.  相似文献   

2.
3.
Raman and infrared spectra of propylgermane, CH3CH2CH2GeH3, and its Ge-deuterated analog, CH3CH2CH2GeD3, were investigated in their gaseous, liquid and solid states. The normal coordinate treatment was carried out by density functional theory (DFT) calculation, using B3LYP/6-31G* and 6-311++G** basis sets, and the corresponding fundamental vibrations were assigned. The trans (T) and gauche (G) forms around the central C–C bond coexisted in the gaseous and liquid states and only the T form existed in the solid state. From the temperature dependent measurements of the Raman spectra in the liquid state, the enthalpy difference was found to be ΔH(TG)=−0.36±0.02 kcalmol−1 with the T form being more stable. The energy differences between the isomers obtained by DFT calculations were ΔE(TG)=−0.46 kcalmol−1 and ΔE(TG)=−0.87 kcalmol−1 by the 6-31G* basis set and 6-311++G** basis set, respectively.  相似文献   

4.
Ab initio (HF/6-31G** and B3LYP/6-31 + + G**) methods have been used to study the stability and structure of complexes between CH3SO3 and CH3NH+3 or C(NH2)+3. Results show that no hydrogen jump is involved in the complex formations, which is different from previous work studying complexes between CH3COO and CH3NH+3. In addition, we have studied complexes between CH3SO3 and HC(NH2)+3 or +H3NC(NH2)3, all of which have a cage structure.  相似文献   

5.
Quantum chemical calculations are used to provide structural, vibrational and energetical information on the dimers of the methanol, methylamine and methanethiol systems. These systems were studied employing the DFT(B3LYP) and MP2 methods together with the 6-31+G** and 6-311+G** basis sets. We found two distinct potential minima for methylamine (one of them is a transition structure) and methanethiol, and one for the methanol dimer. The properties of these dimers are compared with those of the dimers (H2O)2, (NH3)2 and (CH3SH)2. The interactions in these dimers were analyzed using electron density properties at the bond critical point.  相似文献   

6.
The accuracy of the semiempirical quantum mechanics methods (AM1 and PM3), and the ab initio methods (6-31G** and MP2/6-31G**) in predicting intermolecular geometries and interaction energies have been evaluated by detailed studies of 17 bimolecular complexes formed by small molecules. Comparisons between calculated and experimental geometries for 12 complexes are presented. It was found that AM1 gave reasonably good predictions of the geometries of complexes such as CH4 · CH4, which have very weak interactions, but it is not as good as other methods in predicting intermolecular geometry for complexes where hydrogen bonding interactions play an important role. This is consistent with its inability to reproduce the charge transfer in the formation of hydrogen bonds in these complexes.

PM3 is able to predict intermolecular geometries for most complexes, including those with hydrogen bonding; its major flaw is its tendency to overestimate the strength of the interactions between hydrogen atoms. Care should be taken therefore in using PM3 to study complicated molecular systems with multiple hydrogen atom interactions and the method's weakness in handling complexes in which electrostatic forces are important should also be noted.

Among ab initio methods, both the 6-31G** and the MP2/6-31G** were found to outperform AM1 and PM3 in prediction of intermolecular geometry. Both of these ab initio methods showed excellent consistency in geometry prediction for most of the complexes studied, although MP2/6-31G** is better than 6-31G**. It is noted that the MP2/6-31G** did not produce the correct geometry for the CO2· HF complex.

For 12 complexes for which experimental geometry data are available, AM1, PM3, 6-31G**, and MP2/6-31G** successfully predicted the geometry in 10, 12, 12, and 11 cases, respectively. The average errors given by AM1 in the predicted intermolecular distances were 0.264, 0.272, 0.091, and 0.061 Å, respectively. In comparison to the ab initio methods, AM1 and PM3 commonly underestimated the molecular interaction energy in such complexes by ˜ 1–2 kcal mol−1.  相似文献   


7.
The geometric parameters for hydrazoic acid and methyl azide were optimized at the HF/6-31G** and MP2/6-31G** levels and the vibrational frequencies of the compounds were calculated by use of these optimized geometries. The experimental frequencies are assigned on the basis of the calculated results. The effects of deutero-substitution and substitution of hydrogen in HN3 by a methyl group are also discussed.  相似文献   

8.
The geometries of HOOH, CH3OOH, and CH3OOCH3, were optimized with different basis sets (3-21G, 6-31G*(*) and D95**) at different levels of theory (HF, MP2, MP4, and CI). HF/3-21G optimizations result in planar trans conformations for all three peroxides. HF/6-31G** calculations predict skew conformations for HOOH and CH3OOH, but a planar trans struture for CH3OOCH3. For the larger basis set the calculated bond lengths, especially the O-O bonds, are too short. Optimizations for HOOH including electron correlation at the MP2, MP3, MP4, CI, and CCD level improve the agreement for bond lengths and the OOH angle, but result in dihedral angles Which are too large by 3– 8°. In the case of CH3OOCH3, similar calculations at the MP2 and CI level predict planar trans structures instead of the experimentally observed skew conformation. On the other hand, MP4 single point calculations at MP2 optimized parameters result in a correct skew structure. For all three peroxides a computationally “economic” method, i.e., single point calculations at MP2 or MP4 level with HF/3-21G optimized parameters, result in close agreement between calculated and experimental structures.  相似文献   

9.
Variable temperature (−55 to −135°C) studies of the infrared spectra (3500–400 cm−1) of 1-bromo-2-fluoroethane, BrCH2CH2F, dissolved in liquid krypton and xenon have been recorded. From these data, the enthalpy difference has been determined to be 108±9 cm−1 (1.296±0.113 kJ/mol) and 112±8 cm−1 (1.346±0.098 kJ/mol) from the krypton and xenon solutions, respectively, with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate. Structural parameters and conformational stability have also been obtained from MP2/6-311+G** calculations. Combining the ab initio predicted structural parameters with the microwave rotational constants, ro parameters have been obtained for the gauche conformer.  相似文献   

10.
The normal mode frequencies and corresponding vibrational assignments of tert-butylacetylene (TBA) are examined theoretically using the Gaussian 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of the nine types of motion (C---C stretch, CC stretch, C---H stretch, C---C---C bend, CC---C bend, CC---H bend, H---C---H bend, CH3 rock, and CH3 twist) utilizing the C3v symmetry of the molecule. Calculations were performed at the Hartree–Fock, B3LYP, and MP2 levels of theory using the standard 6-311G** basis. Theoretical results were successfully compared against available experimental data.  相似文献   

11.
研究了银溶胶体系表面增强拉曼散射光谱的溶剂效应,发现在不同的溶剂中,银溶胶的聚集状态不同,当胶粒带电荷时,溶剂还能影响分子在胶粒表面的吸附,溶剂通过改变胶粒的聚集状态及分子在胶粒上的吸附这两个因素影响银溶胶体系的SERS光谱。  相似文献   

12.
Infrared and Raman spectra of 1,1-(methylphosphinylidene) bis(methanamine) [mpbm, (CH3)PO(CH2NH2)2] and its N,N′-coordinated Pt(II) and Pd(II) have been studied in the 4000–200 cm−1 frequency range. Ab initio calculations have been carried out for different conformations of the mpbm at HF/6-31G* level of the theory from which structural parameters, conformational stability and predicted infrared and Raman spectra have been obtained. A complete vibrational assignment of the lowest energy conformer, tttg, as well as of its N,N′-coordinated Pt(II) and Pd(II) chloro-complexes was done on the basis of the calculated frequencies, relative infrared intensities, Raman activities and potential energy distribution (PED). The theoretical predictions are compared with the experimental results where appropriate.  相似文献   

13.
Quantitative IR solution data in carbon tetrachloride and chloroform are recorded for the CO and OH regions of 31 chromones. In the 1580–1700 cm−1 region, 5-hydroxychromones show three main maxima, the two of highest frequency, at 1663 ± 3 cm−1 and 1630 ± 5 cm−1 in CCl4 (1661 ± 2 cm−1 and 1627 ± 5 cm−1 in CHCl3), being sufficiently intense as to possess high CO character. Typically, 5-alkoxychromones exhibit two intense maxima in this region, 1663 ± 3 cm−1 and 1613 ± 7 cm−1 in CCl4 (1657 ± 2 cm−1 and 1608 ± 12 cm−1 in CHCl3). Diagnostically useful changes in contour and principal peak positions can be seen for substituted and annellated 5-hydroxychromones. In the 2500–3650 cm−1 region, the stretching frequencies of OH groups at the most commonly encountered positions (C-5, C-7, and 2-CH2OH) in natural chromones, are identified.  相似文献   

14.
Vibrational frequencies and infrared intensities have been calculated at the 6-31G and 6-31G** levels for acetonitrile and for the complexes of acetonitrile with Li+ and Na+ cations. The changes in the infrared characteristics from an isolated acetonitrile to acetonitrile coordinated with metal cations (Li+ and Na+) have been evaluated. The ab initio calculations predict an essential increase of the intensities of the stretching CN, C-C and deformation CH3, CCN vibrations in the complexes of acetonitrile with Li+ and Na+ cations.  相似文献   

15.
乙烯醇锂的从头算研究   总被引:2,自引:1,他引:1  
用限制的HF/3-21G和HF/6-31G*优化乙烯醇锂的几种可能构型,比较了它们的稳定性.用限制的HF/3-1G,从乙醛开始,探讨了气相反应生成乙烯醇锂的机理,并在MP2水平上用6-31G*基组计算了反应热.  相似文献   

16.
The conformational behavior and structural stability of chloro- and fluoromethylsulfonyl isocyanates were investigated by quantum mechanical DFT and ab initio MP2 calculations. The 6-311++G** basis set was employed to include polarization and diffuse functions in the calculations. The molecules were found to exist in a mixture of two stable gauche conformations. The potential scans were calculated from which the rotational barriers could be estimated. The vibrational frequencies and spectra were computed at B3LYP/6-311++G** level. The potential energy distributions were then calculated to provide tentative vibrational assignment for the normal modes of the stable conformers of both molecules.  相似文献   

17.
The potential energy surface (PES) of CN2H rotation of the encapsulated 1-bicyclo[2.2.1]heptyldiazirine (BHD) inside a molecular container: Cram’s hemicarcerand (CH) was explored using two different DFT involved ONIOM methods: B3LYP/6-31G**//ONIOM(B3LYP/6-31G*: AM1) and B971/6-31G**//ONIOM(B971/6-31G*: AM1). The free-state PES of CN2H rotation was also calculated, respectively by B3LYP/6-31G**//B3LYP/6-31G* and B971/6-31G**//B971/6-31G* methods for comparison. The findings in this study have shown that the PES profiles differ from each other notably in the two states. In the encapsulated state the rotation barrier corresponding to the free-state conversion with the largest rotation barrier increases by about 2 kcal/mol, which has exceeded the largest rotation barrier in the free-state. The conformational preference behavior towards certain BHD isomers, which might be in better conformational compatibility with the container, has been demonstrated.  相似文献   

18.
A complete conformational analysis of 2-aminoethanal (2AE) has been carried out using the 6-31G** basis set. The curve corresponding to the barrier of rotation of the N-C-C=O torsion was obtained and compared with the MM392 and the previously reported 4-21 G curves. Geometrical trends relating to intramolecular hydrogen bonding were found and quantitatively discussed. Full geometry optimization MP2/6-31G**//6-31G** was performed for the stable conformers found along the N-C-C=O curve with different arrangements of the NH2 group.  相似文献   

19.
The infrared and Raman spectra in the range 4000–50 cm−1 were obtained for 5-amino-1,3,4-thiadiazole-2-sulfonamide. The molecular geometry was optimized by means of the DFT methods of quantum chemistry (B3LYP/6-31G**), resulting in a structure which agrees quite well with that obtained by X-ray diffraction. The wavenumbers corresponding to the normal modes of vibration were calculated using the same approximation and the associated force field converted to a set of local symmetry coordinates, with subsequent calculation of the potential energy distribution. An assignment of the observed bands is proposed on the basis of such calculations and the comparison with related molecules.  相似文献   

20.
All possible H9-tautomers of 8-oxo-guanine and xanthine were studied by means of PM3 semiempirical and DFT (density functional theory) quantum chemistry methods. Additionally, the five most stable tautomers of both guanine derivatives were estimated on 3-21G, 6-31G, 6-31G** and MP2 (6-31G**) ab initio levels. The impact of the environment polarity on the tautomeric equilibrium was also taken into account. Among the variety of tautomeric isomers most probable are diketo forms of both studied derivatives in non-polar and polar surroundings.

The tautomeric equilibrium was unchanged after connection of the sugar backbone. The most preferred diketo forms of 8-oxo-guanosine and xanthidine are in syn conformations both in polar and non-polar environments. The increase of the syn conformations over anti ones may have the source in the formation of the internal hydrogen bonds between H′5 and N3 atoms. The calculated values of the pseudorotation phase angle were between 144 and 180° in all cases. This corresponds to C′2-endo conformations of all optimised structures.

The N-glycosidic bond stability of most stable tautomers was compared to standard guanosine. Most tautomers of 8-oxo-guanosine and xanthidine are characterised by more stable C1′-N9 bond. This indicates that both these derivatives are hardly susceptible to spontaneous depurination and its removal from the DNA will depend mostly on the activity of DNA repair enzymes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号