首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to its depth-dependent solubility, oxygen exerts paramagnetic effects which become progressively greater toward the hydrophobic interior of micelles, and lipid bilayer membranes. This paramagnetic gradient, which is manifested as contact shift perturbations (19F and 13C NMR) and spin-lattice relaxation enhancement (19F and 1H NMR), has been shown to be useful for precisely determining immersion depth, membrane protein secondary structure, and overall topology of membrane proteins. We have investigated the influence of oxygen on 19F and 13C NMR spectra and spin-lattice relaxation rates of a semiperfluorinated detergent, (8,8,8)-trifluoro (3,3,4,4,5,5,6,6,7,7)-difluoro octylmaltoside (TFOM) in a model membrane system, to determine the dominant paramagnetic spin-lattice relaxation and shift-perturbation mechanism. Based on the ratio of paramagnetic spin-lattice relaxation rates of 19F and directly bonded 13C nuclei, we conclude that the dominant relaxation mechanism must be dipolar. Furthermore, the temperature dependence of oxygen-induced chemical shift perturbations in 9F NMR spectra suggests a contact interaction is the dominant shift mechanism. The respective hyperfine coupling constants for 19F and 13C nuclei can then be estimated from the contact shifts <(deltav/v0)19F> and <(deltav/v0)13C>, allowing us to estimate the relative contribution of scalar and dipolar relaxation to 19F and 13C nuclei. We conclude that the contribution to spin-lattice relaxation from the oxygen induced paramagnetic scalar mechanism is negligible.  相似文献   

2.
The rigid polycyclic nitrogen compound was considered as a test for the reliability of internuclear distances calculated by 1H-NMR spin-lattice relaxation rates. The ‘isotropic’ motional correlation time was calculated from 13C relaxation rates (τC = 0.11 ns at 298 K). Dipolar cross-relaxation rates were calculated by measuring non-, mono- and double-selective proton spin-lattice relaxation rates. All the experimental relaxation rates were thoroughly accounted for by dipolar pairwise interactions. Only at high temperatures a certain contribution from the spin rotational mechanism was apparent.  相似文献   

3.
The chain dynamics in methyl cellulose (MC), hydroxypropylmethyl cellulose (HPMC) and hydroxypropyl cellulose (HPC) were studied with the aid of field-cycling NMR relaxometry technique in the temperature range from 300 to 480 K that is above the glass transition, but below thermal degradation. The frequency dependence of proton spin-lattice relaxation time was determined between 24 kHz and 40 MHz for selected temperatures. The experimental spin-lattice relaxation dispersion data were fitted with the power law relations of T(1) proportional variant omega(gamma) predicted by the tube/reptation model. The exponent's values found from the fitting procedure for MC, HPMC and HPC almost exactly match the ones predicted in tube/reptation model for limit II (gamma=0.75) and in MC also for limit III (gamma=0.50). Remarkably, this finding concerns the polymers in networks formed of the same polymer species.  相似文献   

4.
(1)H nuclear spin-lattice relaxation has been investigated in sodium acetate trihydrate and sorbic acid using field-cycling NMR in the solid state. The relaxation is dominated by the reorientation of the methyl groups. Resonant features arising from coherent tunnelling are observed in both the magnetic field dependence of the spin lattice relaxation rate, T(1)(-1)(B(z)) and in the inverse temperature dependence, T(1)(-1)(1/T). The two systems have different barrier heights and tunnelling frequencies, providing different perspectives on the tunnel resonance phenomena. The magnetic field dependence enables different spectral density components to be separately investigated and in the carboxylic acid, sorbic acid, concerted proton transfer in the hydrogen bonds is also identified at low field and low temperature. The methyl hindering barriers and the correlation times characterising the reorientational dynamics has been accurately determined in both materials.  相似文献   

5.
A field-cycling NMR investigation of (1)H-(13)C polarisation transfer using cross-relaxation and the nuclear solid effect (NSE) is described. Dynamic nuclear polarisation (DNP) of the (13)C spins is observed when forbidden transitions are driven by r.f. irradiation at the sum and difference Larmor frequencies of the two nuclei. When the (1)H spins are pre-polarised, a significant transfer of polarisation to the (13)C nuclei is achieved in a time short compared with the spin-lattice relaxation time of (13)C. The cross-polarisation arising from the NSE is studied as a function of B-field and time. These results are compared with the solutions of the differential equations that govern the coupled system of (1)H-(13)C spins. The effects of cross-relaxation are incorporated into the model for the first time and good agreement between theory and experiment is obtained. The experiments have been conducted at 20K on a (13)C-enriched sample of benzoic acid.  相似文献   

6.
A method is proposed for the calculation of heteronuclear dipolar coupling between two 1/2 nuclei, X and Y, by measuring the spin-lattice relaxation rates of the abundant Y nucleus and of the satellite peaks (1H, 31P, 19F) due to the scalar coupling of Y with the less abundant X nucleus. The 1H-13C dipolar interaction has been evaluated from the proton spin-lattice relaxation rates of tyrosine in water solution and the effective correlation times of the aromatic moiety have been calculated.  相似文献   

7.
Abstract

Dynamic and structural features of N-Isopropyl-N- {3-[4(4-Methoxybenzoylamino)Phenoxy]-2-Hydroxypropyl} Ammonium Chloride in [2H6]DMSO were investigated by measuring 13C and 1H spin-lattice relaxation rates and 13C- {1H} and 1H- {1H} n.O.e. Correlation times for main and internal reorientational motions were interpreted in terms of internal rotation around the two planal axes. Selective and double-selective 1H spin-lattice relaxation rates were measured, wherefrom relevant proton-proton intramolecular distances were calculated. It was shown that the β1? blocking agent assumes a preferred conformation where extensive intramolecular H-bonding prevents segmental motion along the quaternary ammonium sidechain.  相似文献   

8.
A field-cycling NMR pulse sequence is described for studying cross-relaxation between unlike nuclear spins in the solid state. The technique has been applied to study proton tunneling in the hydrogen bonds of a carboxylic acid containing 19F and 1H spins. By studying the B-field dependence of the off-diagonal element of the relaxation matrix that characterizes the longitudinal polarizations, an accurate measure of the proton transfer rate is obtained.  相似文献   

9.
A relatively rapid phase alternation of the effective field in the time averaged precession frequency (TAPF) sequence results in averaging of the proton RF spin-lock field. The spin-locking of the proton magnetization becomes less efficient and thus shortens T(1rho)(H), the proton spin-lattice relaxation time in the rotating frame. The relaxation time also depends on the ratio of tau(1) and tau(2) intervals i.e. tau(1)/tau(2) and not only on the number of tau(c)=tau(1)+tau(2) blocks, i.e. the number of the phase transients. Experiments are performed on solid samples of ferrocene and glycine and for some time intervals, T(1rho)(H) is shortened by factors of 9-100 compared to the relaxation times obtained in the standard experiment.  相似文献   

10.
本文报道了21个0,0一二烷基膦酸酯类化合物的1H、13C和31P NMR参数。研究和讨论了不等价的二烷基1H、13C化学位移和磷碳偶合常数与立体化学的关系。测定了(CH3CH2O)2P(O)CH(CH2NO2)(p-OCH3C6H4)的13C自旋一晶格弛豫时间T1,二乙基13C T1间的差别,说明在类似化合物中,含有化学位移各向异性对弛豫的贡献。  相似文献   

11.
The ferroelectric phase transition at T(C2) (=370K) in RbHSeO(4) has been studied by (1)H and (87)Rb solid-state NMR. Although not large, the spin-lattice relaxation time, T(1), and the spin-spin relaxation time, T(2), of rubidium and of the alpha- and beta-type protons show distinct change near the phase transition. The intensity of the signal due to the alpha-type protons decreases with increasing temperature, and the intensity of alpha-type protons is quite weak above 330K: at a temperature which is about 40K lower than the phase transition temperature, the ordering of the alpha-type protons occurs. The alpha-type protons in the ferroelectric phase lead to a noticeable change in the proton magnetic resonance spectra. Our study of the (1)H spectra shows that the ferroelectric phase transition in RbHSeO(4) is of order-disorder type and is due to the ordering of protons in hydrogen bonds.  相似文献   

12.
The solid state 13C CPMAS NMR spectra of plant cell walls are often complex owing to superposition of resonances from different polysaccharides and the heterogeneity of the cell wall assembly. In this paper, we describe the application of a set of proton relaxation-induced spectral editing (PRISE) experiments which combine 1H relaxation properties (T1, T1rho, T2) with 13C high resolution spectroscopy (CPMAS) to relate the dynamics of the plant cell walls and model systems to their domain structural details. With PRISE it has been found that in plant cell wall materials, cellulose is always associated with the long components of spin-lattice relaxation in both the laboratory and rotating frames whereas non-cellulose polysaccharides (pectin and hemicellulose) are associated with the short ones. For the proton T2 relaxation, cellulose is only associated with the short component (below 20 micros), pectin contributes to both the short component and the long one.  相似文献   

13.
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.  相似文献   

14.
Relaxation calculations for rapidly spinning samples show that spin-lattice relaxation time (T(1Z)) anisotropy varies with the angle between the rotor spinning axis and the external field. When the rate of molecular motion is in the extreme narrowing limit, the measurement of T(1Z) anisotropies for two different values of the spinning angle allows the determination of two linear combinations of the three static spectral densities, J(0)(0), J(1)(0), and J(2)(0). These functions are sensitive to molecular geometry and the rate and trajectory of motion. The utility of these linear combinations in the investigation of molecular dynamics in solids has been demonstrated with natural abundance (13)C NMR experiments on ferrocene. In an isolated (13)C-(1,2)H group, the dipole-dipole interaction has the same orientational dependence as the quadrupole interaction. Thus, the spectral densities that are responsible for dipolar relaxation of (13)C are the same as those responsible for deuteron quadrupolar relaxation. For ferrocene-d(10), deuteron T(1Z) and T(1Q) anisotropies and the relaxation time of the (13)C magic angle spinning peak provide sufficient information to determine the orientation dependence of all three individual spectral densities.  相似文献   

15.
The NMR probe and the matching network has been designed for the1H NMR study in CeNiInH0.53 down to liquid helium temperature using Bruker MSL 100 spectrometer. NMR line-shape measurement shows the absence of any signature of proton pairing in CeNiInH0.53 down to 3.86 K, as it was observed for high hydrogen concentration. The measurement of the spin-lattice relaxation time in the temperature range 300–20K reveals that the relaxation rate is mainly governed by the Korringa-type relaxation mechanism.  相似文献   

16.
Equations for the temperature dependence of the spectral densities J(is)(m)(momega(I) +/-omega(T)), where m=1, 2, omega(I) and omega(T) are the resonance and tunnel splitting angular frequencies, in the presence of a complex motion, have been derived. The spin pairs of the protons or deuterons of the methyl group perform a complex motion consisting of three component motions. Two of them involve mass transportation over the barrier and through the barrier. They are characterized by k((H)) (Arrhenius) and k((T)) (Schr?dinger) rate constants, respectively. The third motion causes fluctuations of the frequencies (nomega(I)+/-omega(T)) and it is related to the lifetime of the methyl spin at the energy level influenced by the rotor-bath interactions. These interactions induce rapid transitions, changing the symmetry of the torsional sublevels either from A to E or from E(a) to E(b). The correlation function for this third motion (k((omega)) rate constant) has been proposed by Müller-Warmuth et al. The spectral densities of the methyl group hindered rotation (k((H)), k((T)) and k((omega)) rate constants) differ from the spectral densities of the proton transfer (k((H)) and k((T)) rate constants) because three compound motions contribute to the complex motion of the methyl group. The recently derived equation [Formula: see text] , where [Formula: see text] and [Formula: see text] are the fraction and energy of particles with energies from zero to E(H), is taken into account in the calculations of the spectral densities. This equation follows from Maxwell's distribution of thermal energy. The spectral densities derived are applied to analyse the experimental temperature dependencies of proton and deuteron spin-lattice relaxation rate in solids containing the methyl group. A wide range of temperatures from zero Kelvin up to the melting point is considered. It has been established that the motion characterized by k((omega)) influences the spin-lattice relaxation up to the temperature T(tun) only. This temperature is directly determined by the equation C(p)T=E(H) (thermal energy=activation energy), where C(p) is the molar heat capacity. Probably the cessation of the third motion is a result of the de Broglie wavelength related to this motion becoming too short. As shown recently, the potential barrier can be an obstacle for the de Broglie wave. The theoretical equations derived in this paper are compared to those known in the literature.  相似文献   

17.
The paramagnetic contributions to the spin-lattice relaxation rates of biotin 13C nuclei, induced by the presence in the water/DMSO solution of the TEMPOL nitroxide, have been analysed in the interaction with avidin. The paramagnetic relaxation data, obtained at different temperatures, indicate that the average solvent/spin-label exposure of biotin carbons is consistent with the conformational features previously observed for the complex in the crystal. The analysis of the paramagnetic perturbation profiles, derived from 13C spin lattice relaxation measurements, seems to be highly informative of the sterical aspects of interaction processes of large biopolymers with their ligands.  相似文献   

18.
NMR relaxation-derived spectral densities provide information on molecular and internal motions occurring on the picosecond to nanosecond time scales. Using (13)C and (15)N NMR relaxation parameters [T(1), T(2), and NOE] acquired at four Larmor frequencies (for (13)C: 62.5, 125, 150, and 200 MHz), spectral densities J(0), J(omega(C)), J(omega(H)), J(omega(H) + omega(C)), J(omega(H) - omega(C)), J(omega(N)), J(omega(H) + omega(N)), and J(omega(H) - omega(N)) were derived as a function of frequency for (15)NH, (13)C(alpha)H, and (13)C(beta)H(3) groups of an alanine residue in an alpha-helix-forming peptide. This extensive relaxation data set has allowed derivation of highly defined (13)C and (15)N spectral density maps. Using Monte Carlo minimization, these maps were fit to a spectral density function of three Lorentzian terms having six motional parameters: tau(0), tau(1), tau(2), c(0), c(1), and c(2), where tau(0), tau(1) and tau(2) are correlation times for overall tumbling and for slower and faster internal motions, and c(0), c(1), and c(2) are their weighting coefficients. Analysis of the high-frequency portion of these maps was particularly informative, especially when deriving motional parameters of the side-chain methyl group for which the order parameter is very small and overall tumbling motions do not dominate the spectral density function. Overall correlation times, tau(0), are found to be in nanosecond range, consistent with values determined using the Lipari-Szabo model-free approach. Internal motional correlation times range from picoseconds for methyl group rotation to nanoseconds for backbone N-H, C(alpha)-H, and C(alpha)-C(beta) bond motions. General application of this approach will allow greater insight into the internal motions in peptides and proteins.  相似文献   

19.
The wide chemical shift dispersion and long T(1) of (13)C have allowed determination of in vivo magnetization transfer effects caused by aspartate aminotransferase and lactate dehydrogenase reactions using (13)C magnetic resonance spectroscopy. In this report, we demonstrate that these effects can be observed in the proton spectra by transferring the equilibrium magnetization of (13)C via the one-bond scalar coupling between (13)C and (1)H using an inverse insensitive nuclei enhanced by polarization transfer-based heteronuclear polarization transfer method. This inverse method allows a combination of the advantages of the long (13)C T(1) for maximum magnetization transfer and the high sensitivity of proton detection. The feasibility of this in vivo inverse polarization transfer approach was evaluated for detecting the (13)C magnetization transfer effect of aspartate aminotransferase and lactate dehydrogenase reactions from a 72.5-microl voxel in the rat brain at 11.7 T.  相似文献   

20.
Equations for the spectral densities of complex motion of a spin pair undergoing internal motion and isotropic/anisotropic overall rotation have been considered. The fluctuations of the interproton distances, caused by internal motion, have been taken into account in the theoretical equations. A method allowing a distinction between the isotropic and the anisotropic overall rotation of molecules has been proposed. The effect of the activation parameters of internal motions (known from the solid state study) on the measured T 1 relaxation of the 13C and 1H–1H cross-relaxation rates has been analysed for methyl-β-D-galactopyranoside in DMSO-d6 solution. The conformational trans-gauche jumps of the methylene group are not fast enough to affect the T 1 value of carbon C6 in the liquid state temperatures regime. Only the methyl group rotation is a very fast internal motion. This motion influences the carbon C7 relaxation and methyl protons–anomeric proton cross-relaxation. The values of interatomic distances between anomeric H(C1) and H(C5) as well as the three methyl protons H(C7) have been calculated from the cross-relaxation rates. The distance H(C1)–H(C7) fluctuates due to the rotation of methyl group. The application of the ‘model-free approach’ to study molecular dynamics in solutions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号