首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The retention of a homologous series of alkylbenzenes was determined on octyl and octadecyl reversed-phase columns in several polar organic liquids. Free energies of transfer were calculated by the SM5.0R classical solvation model for each organic liquid tested and for several alkanes. The relationships between the measured retention factors and the calculated free energies of transfer were then investigated. Although the natural logarithms of the retention factor and the calculated free energies of transfer were linearly correlated, the obtained free energies of transfer of the solutes did not completely explain the retention behavior of the solutes. Nonetheless, even in these pure organic liquids, the energetics of RPLC retention behaved very similarly to those of partitioning.  相似文献   

3.
4.
5.
6.
This paper describes the results of the evaluation of a new solvation parameter model for reversed-phase ion-pair chromatography by linear gradient elution. This model is described as . The first six terms are the usual solvation parameter equation for neutral solutes, and the seventh term represents the contribution to retention from solute’s ionization. The last term describes the retention increase due to ion-pair effect. Retention times obtained for 60 solutes (neutral, acidic and basic) in acetonitrile/aqueous mobile phases with different ion-pair reagents (phosphoric acid, trifluoroacetic acid, heptafluorobutyric acid, perchloric acid, and hexafluorophosphoric acid) are used to evaluate the capability of the function. It is concluded that the model describes the retention of ionizable/ionized compounds under ion-pair conditions very well. Accordingly, the function extends the application of linear solvation energy relationships (LSERs) to ionizable compounds in ion-pair chromatography, and allows us to easily predict their retention for chromatographic optimization, including selectivity optimization and internal standard selection. Finally, the conclusion can be extended to ioscratic elution.  相似文献   

7.
A linear solvation energy relationship model was used to characterize the retention behavior of a stationary phase based upon a nematic side-on liquid crystalline polymer (SOLCP) in reversed-phase liquid chromatography. The set of solutes was constituted of a high variety of compounds whose molecular sizes were considerably smaller than the mesogenic unit size. The results showed good statistical fits for these retention data in 65:35, 75:25 and 85:15 (v/v) methanol-water mobile phases. Both the cavity term and excess molar refraction are the most important favorable retention-governing parameters, whereas the solute hydrogen bond acceptor basicity is the most unfavorable retention parameter. Hydrophobicity and pi-pi interactions decrease strongly when the percentage of methanol increases, leading to an important retention decrease despite the fact that the hydrogen bond interaction weakens as the organic solvent is added. The shape recognition ability of this side-on liquid crystalline stationary phase on polycyclic aromatic hydrocarbon solutes is partly explained by the solutes' high polarizability due to the presence of pi-electrons. However, the solute polarizability is not sufficient and a stationary phase's "structure effect" must to be taken into account for the shape discrimination observed. The strong interaction between liquid crystal molecules caused likely a adsorption retention mechanism rather than a partition mechanism.  相似文献   

8.
In the past few decades, shape selectivity has drawn a great deal of attention from chromatographers. The chemistry and characteristics of bonded stationary phases such as phase type, length of bonded phase, surface coverage, and silica surface material have an effect on the shape selectivity of the columns. Although the effects of bonded phase shape selectivity are relatively well understood, one remaining question is the effect of intercalated solvent on shape selectivity. The intercalation of organic modifier and water molecules into the stationary phase is believed to introduce more rigidity into bonded alkyl chains in RPLC. The use of gas chromatography (GC) opens a new dimension to approach this question. C18 columns 4 cm in length were prepared in our laboratory and used in both LC and GC experiments. Shape selectivity and thermodynamic constants for the transfer of a solute from the mobile phase to the stationary phase have been determined as a function of monomeric octadecyl stationary phase bonding densities over the range of 1.44-3.43 micromol/m2 and a polymeric phase (nominal surface coverage 4.77 micromol/m2). Comparing LC and GC experiments, we observed: (a) similar relationships between shape and phenyl selectivities with monomerically bonded C18 phase densities; (b) different correlation of thermodynamic quantities (DeltaH degrees , DeltaS degrees , and DeltaG degrees ) versus bonded phase densities. The effects of high temperature and residual silanol groups are sources of difficulty in elucidation of the intercalated mobile phase role in selectivity and retention for GC measurements.  相似文献   

9.
10.
11.
An ion-pair reversed-phase HPLC method was evaluated for the separation of synthetic oligonucleotides. Mass transfer in the stationary phase was found to be a major factor contributing to peak broadening on porous C18 stationary phases. A small sorbent particle size (2.5 microm), elevated temperature and a relatively slow flow-rate were utilized to enhance mass transfer. A short 50 mm column allows for an efficient separation up to 30mer oligonucleotides. The separation strategy consists of a shallow linear gradient of organic modifier, optimal initial gradient strength, and the use of an ion-pairing buffer. The triethylammonium acetate ion-pairing mobile phases have been traditionally used for oligonucleotide separations with good result. However, the oligonucleotide retention is affected by its nucleotide composition. We developed a mathematical model for the prediction of oligonucleotide retention from sequence and length. We used the model successfully to select the optimal initial gradient strength for fast HPLC purification of synthetic oligonucleotides. We also utilized ion-pairing mobile phases comprised of triethylamine (TEA) buffered by hexafluoroisopropanol (HFIP). The TEA-HFIP aqueous buffers are useful for a highly efficient and less sequence-dependent separation of heterooligonucleotides.  相似文献   

12.
This paper describes the results of the evaluation of retention dependence on the physicochemical properties of solutes in linear gradient elution by reversed-phase liquid chromatography (RPLC) based on linear solvation energy relationships (LSERs). Retention time data on Inertsil ODS(3) column by linear gradient elution were collected for both acetonitrile-water and methanol-water binary mobile phases under various gradient steepness. Based on the LSERs, the retention times were linearly correlated with the physicochemical properties (size, dipolarity, and hydrogen bond donor-acceptor acidity and basicity) of solutes. As predicted by LSERs, very acceptable linear relationships are observed for both mobile phases. While the magnitudes of the coefficients are modified by the gradient steepness, their signs are consistent with those obtained by isocratic elution. As obtained for isocratic elution, the dominant factors to retention in linear gradient elution of RPLC are the solutes' size and hydrogen bond acceptor basicity. The conclusions of the study allow us to predict retention in chromatographic method development by gradient elution.  相似文献   

13.
14.
15.
An extension of the treatment adopted in a recent paper [P. Nikitas, A. Pappa-Louisi, P. Agrafiotou, J. Chromatogr. A 946 (2002) 33] was used to derive expressions describing the variation of solute retention k with composition in ternary reversed phase liquid chromatography, RP-LC, solvent systems. The equation of the partition model obtained in this way for a ternary mobile phase was identical to that previously derived using the solubility parameter concept. This equation as well as two new expressions of In k versus organic modifiers content were tested in a variety of ternary solvent systems in order to examine the possibility of predicting retention behavior of solutes under ternary solvent mixture elution conditions from known retention characteristics in binary mobile phases. It was demonstrated the superiority of both new equations derived in this paper to that previously proposed and applied to date in ternary solvent mixtures.  相似文献   

16.
Summary System-compatibility and universality of the retention prediction concept has been investigated for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography. The results clearly indicate that the retention prediction approach has a very high potential for optimization of separation conditions in almost all reversed-phase systems, and allows more precise and rapid analysis. This approach may be one of the best optimization techniques, because the system does not require any standard materials.  相似文献   

17.
Summary A thermodynamic equation is derived for the non-specific selectivity of alkyl bonded phases as a function of the mobile phase composition using a displacement mechanism to model the sorption of solvents into the bonded phase. The equation is used to calculate the thermodynamic parameters which characterize the incremental behavior of a hydrophobic group in ethyl alkanoate and methyl perfluoroalkanoate ester solutes chromatographed with water-methanol and water-acetonitrile mobile phases on both octyl and octadecyl bonded phases.  相似文献   

18.
19.
Matrix effect on the retention in reversed-phase liquid chromatography   总被引:1,自引:0,他引:1  
H. Wada 《Chromatographia》1986,22(1-6):194-198
Summary A polymer-based, reversed-phase column (VA-C18), prepared by grafting octadecyl chain onto vinyl alcohol copolymer gel, was investigated for its chromatographic characteristics. n-Alkanes and n-alkyl alcohols were found to be retained only by hydrophobic interaction between the solutes and the octadecyl chain. In the case of aromatic hydrocarbons, in addition to the hydrophobic interaction, - interaction between the solutes and the based material was elucidated to contribute to the retention. For aromatic tertiary amines which are known to strongly interact with the residual silanol group of the silica-based reversed-phase columns to produce broadened and skewed peakes, the VA-C18 column also retained these substrates strongly by the combination of hydrophobic, -, and ionic interactions. In this case, however, symmetrical peaks were observed. From these results, it was determined that in the case of VA-C18, the base material was found not to produce undesirable effect although the solutes interact with the base. Further conclusion obtained was that in reversed phase liquid chromatography, chromatographic properties of base matrix is highly responsible for the overall retention.  相似文献   

20.
Summary It is shown theoretically that when the concentration of organic solvent in the mobile phase increases, or solute size decreases, log k values of small solutes in reversed-phase liquid chromatography (RPLC) will tend to have a minimum value called the convergence point. A theoretical model for evaluating the convergent coordinates of small solutes is presented by using a stoichiometric displacement model for retention (SMDR). The physical meaning of the coordinates of each kind of convergence are also elucidated. The convergence points have either two-dimensional coordinates with a common ordinate (the logarithm of the phase ratio of the column, log ) or threedimensional corrdinates with two common axes: — log and the logarithm of the molar concentration of the pure displacing agent in mobile phase, log aD. The other axis relates to the nature of the solutes, such as carbon number of a homolog, van der Waal's surface area, hydrophobic fragment constant etc. for the latter and those and/or concentration axis for the former. The model was tested with published data and found to give a good fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号