首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
PNA oligomers H-GTAGATCAT-lys-NH2 with cis-(1S,2R/1R,2S)-cyclohexyl-T (III) in the backbone form PNA:RNA duplexes with Tm approximately 30-50 degrees C higher than that of PNA:DNA duplexes. In comparison, cis-(1S,2R/1R,2S)-cyclopentyl PNA-T (IV) form highly stable duplexes with both RNA and DNA without discrimination.  相似文献   

2.
[structures: see text] A serious drawback of peptide nucleic acids (PNAs) from an application perspective that has not been adequately dealt with is nondiscrimination of identical DNA and RNA sequences. An analysis of the available X-ray and NMR solution structures of PNA complexes with DNA and RNA suggested that it might be possible to rationally impart DNA/RNA duplex binding selectivity by tuning the dihedral angle beta of the flexible ethylenediamine part of the PNA backbone (II) via suitable chemical modifications. Cyclohexanyl PNAs (chPNAs) with beta approximately = 65 degrees were designed on the basis of this rationale. The chPNAs introduced remarkable differences in duplex stabilities among their DNA and RNA complexes, with melting temperatures (deltaTm(RNA-DNA) = +16-50 degrees C) depending on the number of modifications and the stereochemistry. This is a highly significant, exceptional binding selectivity of a mix sequence of PNA to RNA over the same DNA sequence as that seen to date. In contrast, cyclopentanyl PNAs (cpPNAs) with beta approximately = 25 degrees hybridize to DNA/RNA strongly without discrimination because of the ring puckering of the cyclopentane ring. The high affinity of chPNAs to bind to RNA without losing base specificity will have immediate implications in designing improved PNAs for therapeutic and diagnostic applications.  相似文献   

3.
Pyrrolidine-amide oligonucleotide mimics (POMs) exhibit promising properties for potential applications, including in vivo DNA and RNA targeting, diagnostics and bioanalysis. Before POMs can be evaluated in these applications it is first necessary to synthesise and establish the properties of fully modified oligomers, with biologically relevant mixed sequences. Accordingly, Boc-Z-protected thyminyl, adeninyl and cytosinyl POM monomers were prepared and used in the first successful solid phase synthesis of a mixed sequence POM, Lys-TCACAACTT-NH2. UV thermal denaturation studies revealed that the POM oligomer is capable of hybridising with sequence selectivity to both complementary parallel and antiparallel RNA and DNA strands. Whilst the duplex melting temperatures (Tm) were higher than the corresponding duplexes formed with isosequential PNA, DNA and RNA oligomers the rates of association/dissociation of the mixed sequence POM with DNA/RNA targets were noticeably slower.  相似文献   

4.
The design and synthesis of novel chiral PNA monomer based on trans-5-aminopipecolic acid is reported. The trans diequatorial disposition of the 1,4 ring substituents in six-membered 5-aminopipecolic acid derivative could be favorable over trans 1,3 axial-equatorial disposition in 4-aminopipecolic acid of PNA. Studies on the synthesis of trans-4/5-aminopipecolyl PNA-eagPNA chimeras and their binding preferences to DNA/RNA in duplex/triplex modes are described.  相似文献   

5.
One-carbon extended conformationally constrained pyrrolidine PNA monomer (bepPNA) has been synthesized, incorporated into PNA sequences at predefined positions, and showed selective RNA binding properties.  相似文献   

6.
Nucleic acid quadruplexes are proposed to play a role in the regulation of gene expression, are often present in aptamers selected for specific binding functions and have potential applications in medicine and biotechnology. Therefore, understanding their structure and thermodynamic properties and designing highly stable quadruplexes is desirable for a variety of applications. Here, we evaluate DNA→RNA substitutions in the context of a monomolecular, antiparallel quadruplex, the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG) in the presence of either K+ or Sr2+. TBA predominantly folds into a chair-type configuration containing two G-tetrads, with G residues in both syn and anti conformation. All chimeras with DNA→RNA substitutions (G→g) at G residues requiring the syn conformation demonstrated strong destabilization. In contrast, G→g substitutions at Gs with anti conformation increased stability without affecting the monomolecular chair-type topology. None of the DNA→RNA substitutions in loop positions affected the quadruplex topology; however, these substitutions varied widely in their stabilizing or destabilizing effects in an unpredictable manner. This analysis allowed us to design a chimeric DNA/RNA TBA construct that demonstrated substantially improved stability relative to the all-DNA construct. These results have implications for a variety of quadruplex-based applications including for the design of dynamic nanomachines.  相似文献   

7.
The design and facile synthesis of a novel chiral six-membered PNA analogue (2S,5R )-1-(N-Boc-aminoethyl)-5-(thymin-1-yl)pipecolic acid, aepipPNA, that upon incorporation into PNA sequences effected stabilization of complexes with target complementary DNA. This is the first example where a six membered-PNA is shown to be capable of forming stable complexes with DNA and further expands the repertoire of cyclic PNA analogues.  相似文献   

8.
Conformationally constrained chiral PNA analogues were designed on the basis of stereospecific imposition of a 1,2-cis-cyclopentyl moiety on an aminoethyl segment of aegPNA. It is known that the cyclopentane ring is a relatively flexible system in which the characteristic puckering dictates the pseudoaxial/pseudoequatorial dispositions of substituents. Hence, favorable torsional adjustments are possible to attain the necessary hybridization-competent conformations when the moiety is imposed on the conventional PNA backbone. The synthesis of the enantiomerically pure 1,2-cis-cyclopentyl PNA monomers (10a and 10b) was achieved by stereoselective enzymatic hydrolysis of a key intermediate ester 2. The chiral (1S,2R/1R,2S)-aminocyclopentylglycyl thymine monomers were incorporated into PNA oligomers at defined positions and through the entire sequence. Hybridization studies with complementary DNA and RNA sequences using UV-Tm measurements indicate that aeg-cpPNA chimera form thermally more stable complexes than aegPNA with stereochemistry-dependent selective binding of cDNA/RNA. Differential gel shift retardation was observed on hybridization of aeg-cpPNAs with complementary DNA.  相似文献   

9.
[structure in text] The synthesis of (2S,4S)- and (2R,4S)-aepPNA monomers of adenine, guanine, and cytosine (3-5) and their incorporation at appropriate positions into aegPNA sequence 7 leads to mixed aeg-aep backbone/mixed nucleobase PNAs 8-11. The thermal stabilities of the derived duplexes with DNA are found to be dependent on nucleobase and backbone stereochemistry.  相似文献   

10.
An alpha/beta-peptide backbone oligonucleotide comprising natural alpha-amino acids alternating with a beta-amino acid component derived from thymidine sequence specifically recognizes and binds to deoxy- and ribo-oligoadenylates in triplex mode.  相似文献   

11.
Gold nanocrystals modified with peptide nucleic acids (PNAs) have been prepared and applied to self-assembly and DNA sensing. Experiments with different PNA structural motifs show that (1). the versatility in PNA synthetic design can be used to modulate the electrostatic surface properties of nanocrystals, presenting an opportunity to control assembly rate and aggregate size, (2). short (6 base) PNAs can hybridize effectively while attached to nanoparticles, providing a route to generating materials with small interparticle spacings, and (3). the superior base pair mismatch selectivity of PNAs is further enhanced on nanosurfaces, enabling PNA-modified nanoparticles to act as highly selective nanoscale sensors, as well as synthons for defect-free self-assembly. This last feature was coupled with a substantial change in colloidal stability upon DNA hybridization to develop a novel colorimetric DNA assay that detects the presence of single base imperfections within minutes. Various modes of PNA hybridization, including the first practical application of PNA-PNA interactions, were used to direct the assembly of nanoparticles into macroscopic arrangements. Shorter duplex interconnects and greater specificity in assembly were obtained compared to similar experiments with DNA-modified nanocrystals.  相似文献   

12.
Nγ-Carboxyalkyl modified peptide nucleic acids (PNAs), containing the four canonical nucleobases, were prepared via solid-phase oligomerization. The inserted peptoid monomers 1 and 2 were constructed through simple synthetic procedures, utilizing appropriate glycidol and iodoalkyl electrophiles. Thermal denaturation studies, performed with complementary antiparallel DNA strands, demonstrated that the length of the Nγ-side chain strongly influences the modified PNAs hybridization properties. Moreover, multiple negative charges on the oligoamide backbone, when present on γ-nitrogen C6 side chains proved to be beneficial for the oligomers’ water solubility and DNA hybridization specificity.  相似文献   

13.
14.
15.
By chemically modifying or replacing the backbone of oligonucleotides it is possible to modulate the DNA and RNA recognition properties and fine-tune the physiochemical properties of oligomers. This is important because it challenges our understanding of natural nucleic acid structural and recognition properties and can lead to nucleic acid mimics with a wide range of applications in nucleic acid targeting, analysis or diagnostics. In this paper we describe the solid phase synthesis of pyrrolidine-amide oligonucleotide mimics (POMs) using Fmoc-peptide chemistry. This required the synthesis of adeninyl, cytosinyl, thyminyl and guaninyl pyrrolidine monomers, with Fmoc- and standard acyl-protecting groups on the exocyclic amino groups and nucleobases respectively. These monomers were used to synthesise several thyminyl and adeninyl POM pentamers, with modest coupling efficiency. The pentamers were purified by RP-HPLC, characterised by mass spectrometry and their DNA and RNA binding properties were investigated using UV thermal denaturation/renaturation experiments. This revealed that all the pentamers exhibit strong affinity for complementary nucleic acids. The further evaluation of longer mixed-sequence POMs is described in a second accompanying paper (R. J. Worthington et al., Org. Biomol. Chem., 2006, DOI: 10.1039/b613386j).  相似文献   

16.
Chimeric RNA oligonucleotides with an artificial triazole linker were synthesized using solution‐phase click chemistry and solid‐phase automated synthesis. Scalable synthesis methods for jointing units for the chimeric structure have been developed, and after click‐coupling of the jointing units with triazole linkers, a series of chimeric oligonucleotides was prepared by utilizing the well‐established phosphoramidite method for the elongation. The series of chimeric 21‐mer oligonucleotides that possessed the triazole linker at different strands and positions allowed for a screening study of the RNA interference to clarify the preference of the triazole modifications in small‐interfering RNA molecules.  相似文献   

17.
The duplex-DNA binding properties of a nonintercalating polypyridyl ruthenium(II) complex that incorporates a linear extended ligand with a catechol moiety has been probed with a variety of photo- and biophysical techniques. These studies reveal that the complex groove binds to DNA sequences biphasically, and displays binding constants equivalent to those of high-affinity metallointercalators. The complex also displays preferential binding to AT-rich sequences. Changes in the structure of the coordinated catechol ligand and the incorporation of intercalating ancillary ligands into the complex were found to modulate both the optical-binding response and binding parameters of the system, which indicates that the catechol moiety plays a crucial role in the observed enhancement to binding affinities.  相似文献   

18.
A series of new ruthenium(II) complexes were synthesized with Schiff bases derived from salicylaldehyde / o-hydroxyacetophenone/ o-vanillin / 2-hydroxy-1-naphthaldehyde with thiosemicarbazide and acetyl furan. They are characterized by elemental analysis, IR, electronic, 1H NMR, 13C NMR and mass spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Four of these complexes were tested for its binding with CT-DNA using absorption spectroscopic studies and two of these complexes exhibit efficient DNA cleavage activity.   相似文献   

19.
Conformationally constrained cis-aminocyclohexylglycyl PNAs have been designed on the basis of stereospecific imposition of 1,2-cis-cyclohexyl moieties on the aminoethyl segment of aminoethylglycyl PNA (aegPNA). The introduction of the cis-cyclohexyl ring may allow the restriction of the torsion angle beta in the ethylenediamine segment to 60-70 degrees that is prevalent in PNA(2):DNA and PNA:RNA complexes. The synthesis of the optically pure monomers (10a and 10b) is achieved by stereoselective enzymatic hydrolysis of an intermediate ester 2. The chiral PNA oligomers were synthesized with (1S,2R/1R,2S)-aminocyclohexylglycyl thymine monomers in the center and N-terminus of aegPNA. Differential gel shift retardation with one or more units of modified monomer units was observed as a result of hybridization of PNA sequences with complementary DNA sequences. Hybridization studies with complementary DNA and RNA sequences using UV-T(m) measurements indicate that PNA with (1S,2R)-cyclohexyl stereochemistry enhances selective binding with RNA over DNA as compared to control aegPNA and PNA with the other (1R,2S) isomer.  相似文献   

20.
An aminonaphthoquinone ligand, L, and its metal complexes of general formula [MLCl2] {M = Co(II), Ni(II), Cu(II) and Zn(II)} have been synthesized and characterized by analytical and spectral techniques. Tetrahedral geometry has been assigned to Ni(II) and Zn(II) complexes and square planar geometry to Co(II) and Cu(II) complexes on the basis of electronic spectral and magnetic susceptibility data. The binding of complexes with bovine serum albumin (BSA) is relatively stronger than that of free ligand and alters the conformation of the protein molecule. Interaction of these complexes with CT-DNA has been investigated using UV-Vis and fluorescence quenching experiments, which show that the complexes bind strongly to DNA through intercalative mode of binding (Kapp 105 M?1). Molecular docking studies reiterate the mode of binding of these compounds with DNA, proposed by spectral studies. The ligand and its complexes cleave plasmid DNA pUC18 to nicked (Form II) and linear (Form III) forms in the presence of H2O2 oxidant. The in vitro cytotoxicity screening shows that Cu(II) complex is more potent against MCF-7 cells and Zn(II) complex exhibits marked cytotoxicity against A-549 cells equal to that of cisplatin. Cell imaging studies suggested apoptosis mode of cell death in these two chosen cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号