首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two GC-MS methods, based on the application of N,O-bis(trimethylsilyl)trifluoroacetamide-derivatization-GC-MS (selected-ion monitoring) and GC-MS-MS without derivatization, respectively, were optimised and applied to the determination of a group of five selected endocrine disrupting compounds (EDCs) in wastewaters. Both methods included solid-phase extraction with Oasis HLB cartridges allowing an enrichment factor for wastewater samples of 100-fold. The investigated EDCs were estrone, 17beta-estradiol, 17alpha-ethynylestradiol, 4-tert-octylphenol and bisphenol A. Results obtained from the validation studies yielded comparable results in both cases. Recoveries in spiked wastewaters at 50 ng/l were higher than 90% for all the compounds, except for 4-tert-octylphenol (75%). Repeatability and reproducibility were adequate, varying from 1.6 to 14%, except for estrone which reproducibility was 28% when the derivatization-GC-MS method was applied. Limits of detection calculated ranged from 2.5 to 27.5 ng/l with differences between both methods from 1.1 (estrone) to 10.4 (bisphenol A) times. Both methods were successfully applied to the analysis of the target compounds in sewage treatment plant influents and effluents. Traces of bisphenol A, 4-tert-octylphenol, estrone and 17beta-estradiol were detected at concentration levels ranging from 13.3 to 1105.2 ng/l.  相似文献   

2.
This paper describes the development and validation of a GC-MS method which allows the simultaneous quantification of 11 endocrine disrupting compounds (EDCs) in surface water samples from both estuary and sea. The analysed EDCs are oestrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-tert-octylphenol, 4-n-octylphenol, 4-nonylphenol, bisphenol A and finally, mono and diethoxylates of 4-nonylphenol and 4-octylphenol. The method includes the pre-concentration of water samples, 1000-fold factor, in OASIS HLB cartridges by solid phase extraction, the derivatisation of all EDCs by N,O-bis(trimethylsilyl)trifluoroacetamide added with 1% trimethylchlorosilane and pyridine (at 65°C for 30?min) and, finally the stabilisation of the EDCs-silylated derivatives, in hexane, for 72?h. The validation parameters revealed that this method was highly specific for all target compounds using real samples. The linearity of the calibration curves (r 2) showed correlation factors higher than 0.990. The detection limits ranged from 0.10 to 1.45?ng?L?1, depending on each analysed compound, and recoveries were satisfactory for most of the assayed EDCs (>60%). Analysis of samples from four polluted areas of Douro River estuary and from two points of the Atlantic Ocean (Portugal) showed high amounts of E1 (up to 1.96?ng?L?1), E2 (up to 14.36?ng?L?1) and EE2 (up to 2.76?ng?L?1).  相似文献   

3.
A high performance liquid chromatographic method (HPLC) for the simultaneous determination of 4-nonylphenol, bisphenol A, 17α-ethinylestradiol and three endogenic estrogens including 17α-estradiol, 17β-estradiol, estriol in urine sample, based on precolumn derivatization with p-nitrobenzoyl chloride, is presented in this paper. The estrogens mentioned above in urine were firstly hydrolyzed with 0.6 mol/l HCl, and then enriched and cleaned-up by ENV-18 C18 solid phase extraction (SPE) column. The estrogens on column were eluted with dichloromethane, and the eluent was evaporated to dryness under gentle nitrogen flow. The residue was allowed to react with p-nitrobenzoyl chloride at 25 °C for 30 min. Separation was performed on a C18 column with gradient elution using acetonitrile and water as mobile phase. A fluorescence detection system was used to detect the fluorescent derivatization products. The detection limit of the method was 2.7 μg/l for bisphenol A and 17β-estradiol, 2.9 μg/l for 4-nonylphenol, 4.6 μg/l for 17α-estradiol and 17α-ethinylestradiol and 8.3 μg/l for estriol, respectively. The relative standard deviations (R.S.D.) ranged from 1.29 to 4.52% and the recoveries ranged from 85.5 to 99.9%. The method was applied to the determination of those six estrogens mentioned above in human urine samples collected from 20 healthy volunteers (aged 21-29). Bisphenol A (BPA) and 4-nonylphenol (NP) were detected with average contents of 1.22 ± 1.38 mg/l and 0.38 ± 0.77 mg/l in 10 male urine samples and 1.29 ± 1.22 mg/l and 0.05 ± 0.05 mg/l in 10 female urine samples, respectively. 17α-ethinylestradiol (α-EE2) was also detected with average contents of 0.13 ± 0.41 mg/l and 0.06 ± 0.15 mg/l in male and female urine samples, respectively.  相似文献   

4.
Continuous disposal of endocrine-disrupting compounds (EDCs) into the environment can lead to serious human health problems and can affect plants and aquatic organisms. The determination of EDCs in water has become an increasingly important activity due to our increased knowledge about their toxicities, even at low concentration. The EDCs in water samples from the reclaimed water plant of Tianjin, northern China, were identified by gas chromatography (GC)–mass spectrometry (MS). Important and contrasting EDCs including estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), 4-tert-octylphenol (OP), 4-nonylphenol (NP), bisphenol A (BPA), di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl)phthalate (DEHP) were selected as the target compounds. Concentrations of steroid hormones, alkylphenolic compounds and phthalates ranged from below the limit of detection (LOD) to 8.1 ng L−1, from <LOD to 14.2 ng L−1, and from 1.00 μg L−1 to 23.8 μg L−1, respectively. The average removal efficiencies for target EDCs varied from 30% to 82%. These results indicate that environmental endocrine disrupting compounds are not completely removed during reclaimed water treatment and may be carried over into the general aquatic environment.  相似文献   

5.
A solid-phase extraction (SPE)-gas chromatography (GC)-mass spectrometry (MS) analytical method for the simultaneous separation and determination of endocrine disrupting chemicals (EDCs) from water samples is described in detail. Important and contrasting EDCs including estrone, 17beta-estradiol, 17beta-ethynylestradiol, 16beta-hydroxyestrone, 4-nonylphenol, bisphenol A and 4-tert-octylphenol were selected as the target compounds. The SPE technique, followed by the derivatisation with bis (trimethylsilyl) trifluoroacetamide was used for the extraction recoveries of target compounds from water samples. A number of parameters that may affect the recovery of EDCs, such as the type of SPE cartridges, eluents, as well as water properties including pH value, and concentration of salts and humic substances were investigated. It is shown that the Oasis cartridges produced the best recoveries of target EDCs while ethyl acetate was efficient in eluting EDCs from SPE cartridges. The recovery of some EDCs was enhanced by the addition of salt, but reduced by the increase in pH value and humic acid concentration. The optimised method was further verified by performing spiking experiments in natural river water and seawater matrices, with good recovery and reproducibility for all the selected compounds. The established method was successfully applied to environmental water samples from East and West Sussex, UK, for the determination of the target EDCs.  相似文献   

6.
建立食用包装材料中的双酚A、壬基酚等多种环境激素的非水毛细管电泳-化学发光分析方法.食品包装材料样品浸出物中的双酚A、烷基酚等环境激素经衍生剂DIB-Cl衍生后,经过非水毛细管电泳分离后,分别与过氧草酸酯化学发光反应体系作用,光信号经过光电倍增管接收放大后被检测.以雌二醇(17β-E2)为内标,以相对迁移时间定性,相对发光强度比定量,内标校准曲线法测定样品浸出物中待测物的含量.对影响非水毛细管电泳分离如溶剂组成和比例、电解质浓度、温度、乙酸浓度、电泳电压等条件进行了优化.同时对化学发光体系也进行了优化.4-叔丁基酚、双酚A、4-叔辛基酚、4-壬基酚和四溴双酚 A分别在0.0095~3.0 mg/L, 0.0087~3.0 mg/L, 0.0085~3.0 mg/L, 0.011~3.0 mg/L和0.009~3.0 mg/L范围内线性良好,r>0.9947.相对迁移时间和相对峰高的RSD分别为0.88%~2.96%和 6.54%~8.57%.加标回收率为86.7%~98.8%.对5种常见的食品包装材料样品进行了测定, 所建立的方法简便、快速、灵敏,适合于食品包装材料中酚类环境激素的检测.  相似文献   

7.
A method for the determination of seven alkylphenols and bisphenol A by stir bar sorptive extraction (SBSE) with in situ derivatization-thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) is described. SBSE was performed with in situ acetylation and without derivatization for comparison. For 4-tert-butylphenol and bisphenol A, in situ acetylation improved the responses in SBSE-TD-GC-MS. The method detection limits ranged from 0.1 to 3.2 ng/l. The recoveries of the analytes from a river water sample spiked with standards at 10 and 100 ng/l were 85.3-105.9% (R.S.D., 3.0-11.0%) and 88.3-105.8% (R.S.D., 1.6-8.3%), respectively.  相似文献   

8.
黄渤海近岸海域酚类内分泌干扰物分布特征及其来源解析   总被引:1,自引:0,他引:1  
在黄渤海近岸海域采集了34个水体样品,利用HPLC-MS/MS分析了双酚A、辛基酚、壬基酚、2,4-二氯酚、对叔丁基苯酚和对特辛基苯酚等6种酚类内分泌干扰物的含量,并探讨了其分布特征及来源.结果表明,中国北部近岸海域6种酚类内分泌干扰物的含量范围在5.25~1351.20ng/mL之间.结合因子分析和层次聚类分析结果,说明渤海、黄海近岸海域中酚类化合物主要以辛基酚、壬基酚、2,4-二氯酚为主,局部海域伴有双酚A的高残留;从整个海域范围看,黄渤海近岸海域水体中酚类化合物污染状况具有区域特征,整体呈现出南高北低的特点,且酚类物质分布具有明显的地区特性,一定程度上具有聚集性;来源解析结果表明黄渤海近岸海域中酚类内分泌干扰物主要来源为生活污水和工业废水.  相似文献   

9.
The highly complex matrix of activated sludge in sewage treatment plants (STPs) makes it difficult to detect endocrine-disrupting chemicals (EDCs) which are usually present at low concentration levels. To date, no literature has reported the concentrations of steroid estrogens in activated sludge in China and very limited data are available worldwide. In this work, a highly selective and sensitive analytical method was developed for simultaneous determination of two classes of EDCs, including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), 4-nonylphenol (NP) and bisphenol A (BPA), in the liquid and solid phases of activated sludge. The procedures for sample preparation, extracts derivatization, and gas chromatography–mass spectrometry (GC–MS) quantification were all optimized to effectively determine target EDCs while minimizing matrix interference. The developed method showed good calibration linearity, recovery, precision, and a low limit of quantification (LOQ) for all selected EDCs in both liquid and solid phases of activated sludge. It was successfully applied to determine the concentrations of EDCs in activated sludge samples from two STPs located in Beijing and Shanghai of China, respectively.  相似文献   

10.
A new method using the extraction and preconcentration capabilities of stir bar sorptive extraction, combined with high-resolution gas chromatography and mass spectrometry, was developed for the determination of five selected endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol, and 17α-ethinylestradiol) in water. In situ derivatization to transform the phenolic compounds into lipophilic and volatile analytes was carried out with acetic anhydride. Two different methods of headspace derivatization to further improve the chromatographic properties of 17β-estradiol and 17α-ethinylestradiol were developed and compared. The optimized method provided good sensitivity (limits of quantitation 1.2–2.6 ng), repeatability (relative standard deviation 2–9%), and reproducibility (relative standard deviation 10–17%). Passive sampling by means of polar organic chemical integrative samplers was applied to monitor river waters used as supply sources for drinking water treatment plants in the Liguria region of Italy. The analytes showed a different distribution at the three sites considered; bisphenol A proved to be the most abundant, ranging from 185 to 459 ng per sampler.  相似文献   

11.
A fully automated protocol consisting of microextraction by packed sorbents (MEPS) coupled with large volume injection-in-port-derivatization-gas chromatography–mass spectrometry (LVI-derivatization-GC–MS) was developed to determine endocrine disrupting compounds (EDCs) such as alkylphenols, bisphenol A, and natural and synthetic hormons in river and waste water samples. During method optimization, the extraction parameters as ion strength of the water sample, the MEPS extraction regime, the volume of organic solvent used for the elution/injection step, the type of elution solvents and the selectivity of the sorbents were studied. For optimum in-port-derivatization, 10 μL of the derivatization reagent N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS) was used. 17β-Estradiol-molecularly imprinted polymer (MIP) and silica gel (modified with C-18) sorbents were examined for the enrichment of the target analytes from water samples and the obtained results revealed the high selectivity of the MIP material for extraction of substances with estrogen-like structures. Recovery values for most of the analytes ranged from 75 to 109% for the C18 sorbent and from 81 to 103% for the MIP material except for equilin (on C18 with only 57–66% recovery). Precision (n = 4) of the entire analysis protocol ranged between 4% and 22% with both sorbents. Limits of detection (LODs) were at the low ng L−1 level (0.02–87, C18 and 1.3–22, MIP) for the target analytes.  相似文献   

12.
An analytical method has been developed for the determination of five naturally occurring estrogens (estradiol, estriol, estrone, genistein, daidzein), one synthetic hormone (ethynylestradiol) and three xenoestrogens (4-nonylphenol (NP), 4-tert-octylphenol (4-tert-OP), bisphenol A (BPA)) in coastal marine waters. The procedure includes a solid-phase extraction of approx. fifty litres of water samples on the solid-phase copolymer Oasis HLB followed by a clean-up on silica. Twenty-five percent aliquots were used for the analytical determination of the analytes using high performance liquid chromatography coupled with electrospray-ionisation tandem mass spectrometry (HPLC-ESI-MS/MS). Calculated extraction recoveries between 52 (4-tert-octylphenol) and 91% (nonylphenol) were obtained for the method developed. Matrix interferences occurring during electrospray ionisation were quantified by spiking the extracts prior to the measurements. Method detection limits ranged from 0.02 (estrone) to 1 ng L(-1) (estriol). The method was applied to determine environmental estrogens in coastal waters of the Baltic Sea. The analyses showed the presence of five compounds at levels between 0.10 (estrone) and 17 ng L(-1) (ethynylestradiol).  相似文献   

13.
An optimisation of derivatisation methods for the simultaneous determination of endocrine disrupting chemicals (EDCs) in water by solid-phase extraction (SPE) gas chromatography-mass spectrometry (GC-MS) was developed in this study. Seven highly potent EDCs including 17β-estradiol (E2), estrone (E1), 16α-hydroxyestrone, 17α-ethynylestradiol (EE2), bisphenol A, 4-nonylphenol and 4-tert-octylphenol were selected as the target compounds. The SPE technique, followed by the derivatisation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was used for the extraction recoveries of compounds from water and effluent samples. The stability of the silylation derivatives under different reaction conditions was investigated. The combined use of BSTFA and pyridine as derivatisation reagents, together with the use of hexane as the final solvent, was preferred in order to generate more stable derivatives of EDCs. The relative response factor (RRF) of all derivatives except that of EE2 was stable 120 h after derivatisation. The addition of pyridine as derivatisation reagent with BSTFA can prevent the conversion of EE2 to other products during the reaction. Several parameters that may affect the recovery of EDCs, such as the SPE flow rate, and water properties including aquatic colloid content and surfactant concentration were tested. The results showed that the flow rate (1-25 mL min−1), colloid concentration (0-50 mg L−1) and surfactants concentration (0-10 μg L−1) did not cause significant decrease in the EDCs recovery.  相似文献   

14.
A highly sensitive and selective method for simultaneous determination of some hydroxyl group-containing endocrine disruptors, including bisphenol A (BPA), bisphenol B (BPB), bisphenol E (BPE), bisphenol F (BPF) and 4-nonylphenol (4-NP), was developed. The method consists of precolumn derivatization of the analytes, solid-phase extraction (SPE) and subsequent chromatographic analysis by high-performance liquid chromatography (HPLC) with fluorescence detection. 4,4'-Cyclohexylidenebisphenol (BPZ) was used as an internal standard. Derivatization was carried out using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) as a label. Parameters of the derivatization reaction (temperature, time, concentration of reagent, stability, etc.) and of the solid-phase extraction (recovery, solvent, etc.) were studied in detail. Detection limits of compounds studied in standard solutions ranged from 0.08-1.3 ppb (ng/ml). The proposed method was successfully applied to plastic samples; BPA was found in both polycarbonate and polyvinyl chloride plastics, while 4-NP was found in plastics made of polyvinyl chloride and another polymer.  相似文献   

15.
A method for the identification and quantification of bisphenol A and 12 bisphenol analogues in river water and sediment samples combining liquid–liquid extraction, precolumn derivatization, and ultra high‐performance liquid chromatography coupled with tandem mass spectrometry was developed and validated. Analytes were extracted from the river water sample using a liquid–liquid extraction method. Dansyl chloride was selected as a derivatization reagent. Derivatization reaction conditions affecting production of the dansyl derivatives were tested and optimized. All the derivatized target compounds were well separated and eluted in 10 min. Dansyl chloride labeled compounds were analyzed using a high‐resolution mass spectrometer with electrospray ionization in the positive mode, and the results were confirmed and quantified in the parallel reaction monitoring mode. The method validation results showed a satisfactory level of sensitivity. Linearity was assessed using matrix‐matched standard calibration, and good correlation coefficients were obtained. The limits of quantification for the analytes ranged from 0.005 to 0.02 ng/mL in river water and from 0.15 to 0.80 ng/g in sediment. Good reproducibility of the method in terms of intra‐ and interday precision was achieved, yielding relative standard deviations of less than 10.1 and 11.6%, respectively. Finally, this method was successfully applied to the analysis of real samples.  相似文献   

16.
Sheng N  Wei F  Zhan W  Cai Z  Du S  Zhou X  Li F  Hu Q 《Journal of separation science》2012,35(5-6):707-712
A unique stir bar coated with dummy molecularly imprinted polymers for bisphenol A was prepared by sol-gel technique. The scanning electron microscopic image of the coating presented a homogeneous surface with a thickness of about 57 ± 2.5 μm. The Fourier transform infrared spectrum of the coating proved the incorporating of dummy molecularly imprinted polymers with the sol-gel network. When used to extract bisphenol A from aqueous solution containing bisphenol A and its three analogs (4-tert-butylphenol, 4,4'-dihydroxybiphenyl, and 3,3',5,5'-tetrabromo-bisphenol A). Dummy molecularly imprinted polymers-coated stir bar showed better selectivity than the bars coated with polydimethylsiloxane or non-imprinted polymers. The extraction conditions including stirring speed, pH, and extraction time were optimized. After back extraction with methanol, the extracts were analyzed by high-performance liquid chromatography-fluorescence detection. The linear range was 0.0228-0.456 ng/mL with correlation coefficient of 0.9994 and the detection limit was about 5.70 × 10(-3) ng/mL based on three times ratio of signal-to-noise. The method was applied to the determination of trace bisphenol A in tap water.  相似文献   

17.
李鱼  刘建林  张琛  王夏娇 《分析化学》2012,40(1):107-112
建立了碳纳米管的固相萃取-分散液液微萃取-柱前荧光衍生化(SPE-DLLME-PFD)测定水体中痕量雌三醇(E3)、双酚A(BPA)、17α-乙炔基雌二醇(EE2)及17β-雌二醇(E2)的高效液相色谱方法.采用中心复合设计和响应曲面法分析并优化SPE、DLLME及PLD条件,最佳条件为210 mL水样以2.0 mL/min的流速过固相萃取柱(碳纳米管量30 mg),甲醇洗脱,氮气浓缩并定容至0.6 mL(分散剂),将100 μL C6MIM[PF6]与分散剂的混合液注入到NaCl含量为25%的2.0 mL去离子水中,离心,移取20 μL下层有机相于样品瓶中,与4.0 mg衍生剂混合,在40℃水浴中衍生25 min;用0.1mL甲醇溶解过量的衍生剂颗粒,取20 μL进样分析.在优化条件下.4种雌激素的线性范围为0.05~5.00 μg/L,相关系数R2=0.9966~0.9999;,检出限介于0.13~6.33 ng/L(S/N=3)之间.不同加标浓度条件下,雌激素的加标回收率在83.1%~122.4%范围内(RSD=1.7%~9.6%).在实际水样中E3和BPA检出率较高.与其它方法相比,本方法虽然萃取时间长、水样量大、步骤多,但具有检出限低、操作简便、环境友好等优点.  相似文献   

18.
An efficient and reliable method based on gas chromatography–mass spectrometry (GC–MS) was developed for the extraction and analysis of six phenolic endocrine disrupting chemicals (EDCs), such as 4-nonylphenol (4-NP), nonylphenol-mono-ethoxylate (NP1EO), nonylphenol-di-ethoxylate (NP2EO), 4-tert-octylphenol (4-t-OP), bisphenol A (BPA) and 4-cumylphenol (4-CP) in surface water and sediment. The method was developed by using microwave-assisted extraction (MAE), solid phase extraction (SPE) and derivatization procedure. The MAE procedures were performed by optimizing three key process factors, consisted of extraction solvent, extraction temperature and holding time, affecting the extraction efficiency from sediment samples. For SPE, various parameters that may affect the recovery efficiency of water samples, such as SPE phase cartridge, elution solvent, as well as pH of water samples, were investigated. A series of derivatization conditions, such as derivatization reagent, reaction temperature and reaction time, were improved. The method achieved good repeatability and reproducibility with relative standard deviations <13% for all target EDCs in the both samples. Satisfactory recoveries for spiked water and sediment samples ranged from 85 to 101% and 74 to 105%, respectively. The limits of quantification varied from 0.20 (4-t-OP) to 11.50 ng L?1 (NP2EO) and from 0.31 (4-t-OP) to 9.50 ng g?1 dry weight (dw) (NP2EO) for water samples and sediment samples, respectively. The established method was successfully applied to the analysis of target EDCs in surface water and sediment samples collected from Caohai site of Dianchi Lake, China. The results showed that NP1EO, NP2EO and BPA were the three dominant phenolic EDCs in the site, reaching 114, 97 and 149 ng L?1 in surface water, while 444, 186 and 178 ng g?1 dw in surface sediment, respectively.  相似文献   

19.
Bisphenol A (BPA) is a widely used industrial chemical in the manufacturing of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt normal hormonal function and hence, potentially, have negative effects on the human health. While total BPA is frequently reported, it is recognized that free BPA is the biologically active form and is rarely reported in the literature. The objective of this study was to develop a sensitive and improved method for the measurement of free and total BPA in human urine. Use of a labeled conjugated BPA (bisphenol A-d6 β-d-glucuronide) allowed for the optimization of the enzymatic reaction and permitted an accurate determination of the conjugated BPA concentration in urine samples. In addition, a 13C12-BPA internal standard was used to account for the analytical recoveries and performance of the isotope dilution method. Solid-phase extraction (SPE) combined with derivatization and analysis using a triple quadrupole GC-EI/MS/MS system achieved very low method detection limit of 0.027 ng/mL. BPA concentrations were measured in urine samples collected during the second and third trimesters of pregnancy in 36 Canadian women. Total maternal BPA concentrations in urine samples ranged from not detected to 9.40 ng/mL (median, 1.21 ng/mL), and free BPA concentrations ranged from not detected to 0.950 ng/mL (median, 0.185 ng/mL). Eighty-six percent of the women had detectable levels of conjugated BPA, whereas only 22 % had detectable levels of free BPA in their urine. BPA levels measured in this study agreed well with data reported internationally.  相似文献   

20.
An improved method was developed for the simultaneous determination of eight steroid and phenolic endocrine disrupting chemicals, such as oestrone (E1), 17β-oestradiol (E2), oestriol (E3), 17α-ethynylestradoil (EE2), 4-nonylphenol (4-NP), bisphenol A (BPA), 4-tert-octylphenol (4-t-OP) and 4-cumylphenol (4-CP), in biological samples. The optimal extraction and clean-up procedures were investigated using microwave-assisted extraction (MAE), automated gel permeation chromatography (GPC) and solid phase extraction (SPE). As a consequence, the most efficient extraction was achieved by using MAE with methanol as solvent at an extraction temperature of 110°C for 20?min. The clean-up of extracts was carried out by GPC on a Biobeads S-X3 column with cyclohexane/ethyl acetate (1:1, v/v) as mobile phase. Target compounds were eluted in the fraction from 7–14?min retention time. Moreover, the cleanest extracts were obtained by solid phase extraction with C-18 cartridges after the elution with 15?mL ethyl acetate. The final sample extracts were derivatised using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) (1% trimethylchlorosilane, TMCS) as derivatisation reagent with pyridine as the solvent. Quantification was performed by gas chromatography-mass spectrometry (GC-MS) with electron ionisation (EI) and selected ion monitoring (SIM) mode. The method was validated by spiked samples which showed good recovery and reproducibility. The overall recoveries ranged between 55.1% and 100.6%, with relative standard deviations (RSD) of 2.3–12.7% for the entire procedure. Method detection limits (MDL) ranged from 0.3 to 0.7?ng?g?1 dry weight (dw). Performance of the method was demonstrated by its application on tissues from fish exposed to high concentration of EDCs in the laboratory. The developed method is a promising approach for the analysis of steroid and phenolic endocrine disrupting chemicals in various biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号