首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The self‐assembled gelation of an amino‐acid‐based low molecular weight gelator having a pyrene moiety at the N terminus and a bis‐ethyleneoxy unit linked with succinic acid at the C terminus is reported. This amphiphile is capable of gelating binary mixtures (1/3 v/v) of CH3CN/water, DMSO/water, and DMF/water, and the minimum gelation concentration (MGC) varied from 0.2 to 0.3 % w/v. The sodium salt of the amphiphile efficiently gelates water with an MGC of 1.5 % w/v. The participation of different noncovalent interactions in supramolecular gelation by formation of fibrillar networks was investigated by spectroscopic and microscopic methods. High mechanical strength of the supramolecular gels is indicated by storage moduli on the order of 103 Pa. The hydrogel was utilized for energy transfer, whereby inclusion of only 0.00075 % w/v of acridine orange resulted in about 50 % quenching of the fluorescence intensity of the gel through fluorescence resonance energy transfer.  相似文献   

2.
The search for low molecular weight hydrogelators (LMWH) with varying structural motif is getting intense because of its potential application in the field of biomedicines as well as the diversified area of nano-biotechnology. In this paper, we have developed hydrogels of simple cationic dipeptide amphiphiles that have a wide range of minimum gelation concentration (MGC), 12-0.25% (w/v) in plain water. The self-aggregation behavior of these thermoreversible hydrogelators has been investigated through different spectroscopic and microscopic techniques. A balanced participation of hydrophilicity and hydrophobicity is the major driving force for gelation, which could be modulated by a minute change in the architecture of the amphiphile head. The prospective use of this material in controlled release suggests that this system could also be applied as the drug delivery vehicle. Moreover, the presence of a biodegradable amide linkage susceptible to base or enzyme-catalyzed hydrolysis increases its probable applications as biomaterials.  相似文献   

3.
Fmoc or Boc mono-substituted cyclo(L-Lys-L-Lys)s were synthesized via the reaction of lysine cyclic dipeptide with Fmoc N-hydroxysuccinimide este(Fmoc-OSu) and di-tert-butyl dicarbonate[(Boc)2O], respectively. The resulted mono-substituted cyclo(L-Lys-L-Lys)s(2-4) by means of test tube inversion method served as organogelators enabled to form stable thermo-reversible organogels in alcoholic, substituted benzene and chlorinated solvents, with the minimum gelation concentration(MGC) in a range of 1%-4%(mass fraction). The transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observations reveal that these gelators self-assembled into 3D nanofiber, nanoribbon or nanotube network structures. The rheological measurement exhibited that the storage modulus of gels is higher than the loss one, and the complex viscosity is reduced linearly with the increasing of scanning frequency. The fluorescence spectrum of compound 2 in 1,2-dichloroethane and benzene demonstrates that the emission peak of Fmoc at 320 nm has red-shifted and the intensity decreases gradually, while the intensity of the emission peak at 460 nm substantially enhances as a function of concentration, indicating the existence of π-π sta- cking interactions and the formation of J-type aggregates. Meanwhile, compound 4 self-assembled into nanotubes via the stacking of multiple bilayer membranes. Fmoc and Boc disubstituted cyclo(L-Lys-L-Lys)(3) holds the relatively lower MGC values, showing the stronger gelation ability in most selected organic solvents due to the presence of both Fmoc and Boc groups.  相似文献   

4.
Gelation mechanism is of utmost importance to the rational design of supramolecular hydrogelators. Although both kinetic and thermodynamic controlled self‐assembly processes have been widely studied in hydrogels, the formation relationship between crystalline and amorphous gel networks still remains ambiguous. Herein, a gelation transformation from a kinetic to a thermodynamic process was achieved by balancing the rigidity and flexibility of the inorganic–organic co‐assemblies. By using polyoxometalates and zwitterionic amphiphiles, the transition morphologies between crystalline and amorphous hydrogel networks were evidenced for the first time, as ordered wormlike micelles. Given the versatile applications of hydrogels in biological systems and materials science, these findings may highlight the potential of inorganic–organic binary supramolecular hydrogelators and fill in the blank between kinetic and thermodynamic controlled gelation processes.  相似文献   

5.
Research investigations involving pristine carbon nanotubes (CNTs) and their applications in diversified fields have been gathering enormous impetus in recent times. One such emerging domain deals with the hybridization of CNTs within hydrogels to form soft nanocomposites with superior properties. However, till now, reports on the inclusion of pristine CNTs within low‐molecular‐weight hydrogels are very scarce due to their intrinsic feature of remaining in the bundled state and strong repulsive behavior to the aqueous milieu. Herein, the synthesis of a series of amino acid/dipeptide‐based amphiphilic hydrogelators having a quaternary ammonium/imidazolium moiety at the polar head and a C16 hydrocarbon chain as the hydrophobic segment is reported. The synthesized amphiphiles exhibited excellent hydrogelation (minimum gelation concentration (MGC) ≈0.7–5 % w/v) as well as single‐walled carbon nanotube (SWNT) dispersion ability in aqueous medium. Interestingly, the dispersed SWNTs were incorporated into the supramolecular hydrogel formed by amphiphiles with an imidazolium moiety at the polar end through complementary cation–π and π–π interactions. More importantly, the newly synthesized hydrogelators were able to accommodate a significantly high amount of pristine SWNTs (2–3.5 % w/v) at their MGCs without affecting the gelating properties. This is the first time that such a huge amount of SWNTs has been successfully incorporated within hydrogels. The efficient inclusion of SWNTs to develop soft nanocomposites was thoroughly investigated by spectroscopic and microscopic methods. Remarkably, the developed nanocomposites showed manifold enhancement (≈85‐fold) in their mechanical strength compared with native hydrogel without SWNTs. The viscoelastic properties of these nanocomposites were readily tuned by varying the amount of incorporated CNTs.  相似文献   

6.
The water immobilization by a simple amino acid-containing cationic surfactant was investigated. A variety of techniques, such as (1)H NMR spectroscopy, circular dichroism (CD), steady-state fluorescence spectroscopy, and field-emission scanning electron microscopy (FESEM) were applied to determine the formation and architecture of the hydrogel. The new gelator with a minimum gelation concentration (MGC) of 0.3 % w/v shows prolonged stability and a low melting temperature (39 degrees C). (1)H NMR experiments revealed that intermolecular hydrogen bonding between the amide groups and pi-pi stacking of the indole rings are the two regulating parameters for gelation. Furthermore, fluorescence studies with 8-anilino-1-naphthalenesulfonic acid (ANS) as the probe indicate the participation of hydrophobicity during gelation. The luminescence study using both ANS and pyrene, along with FESEM results, indicate a critical concentration, well below the MGC, at which fibres begin to form. These cross-link further to give thicker fibers, leading to the formation of a hydrogel (0.3 % w/v). This new hydrogelator expresses high supramolecular chirality, as evidenced by the CD spectra. In addition, the gelator molecule was found to be nontoxic up to a concentration of 4 mM (0.2 % w/v). The high supramolecular chirality, prolonged stability, low melting point, and biocompatibility of the molecule make it a focus of chemical and biological interest.  相似文献   

7.
The supramolecular organogelation of alcohols was observed in relatively hydrophobic amphiphiles with a short oligo(ethylene glycol) unit and three long alkyl chains at room temperature, while the hydrogelation occurred in more hydrophilic gelators with a longer poly(ethylene glycol) unit and two long alkyl chains at various temperatures. When a hot aqueous solution of some of the synthetic hydrogelators was cooled down, the supramolecular hydrogel was formed at room temperature. In some other amphiphiles with less intermolecular interactivity in water at room temperature, a reverse phase transition of sol to gel was observed by elevating the temperature of their aqueous systems, especially below a physiological temperature, 37 °C. The supramolecular hydrogelation at a low or high temperature was dependent on a slight molecular modification of the synthetic amphiphiles.  相似文献   

8.
The development of new low-molecular-weight gelators for organic solvents is motivated by several potential applications of gels as advanced functional materials. In the present study, we developed simple dipeptide-based organogelators with a minimum gelation concentration (MGC) of 6-0.15 %, w/v in aromatic solvents. The organogelators were synthesized using different L-amino acids with nonpolar aliphatic/aromatic residues and by varying alkyl-chain length (C-12 to C-16). The self-aggregation behavior of these thermoreversible organogels was investigated through several spectroscopic and microscopic techniques. A balanced participation of the hydrogen bonding and van der Waals interactions is crucial for efficient organogelation, which can be largely modulated by the structural modification at the hydrogen-bonding unit as well as by varying the alkyl-chain length in both sides of the hydrophilic residue. Interestingly, these organogelators could selectively gelate aromatic solvents from their mixtures with water. Furthermore, the xerogels prepared from the organogels showed a striking property of adsorbing dyes such as crystal violet, rhodamine 6G from water. This dye-adsorption ability of gelators can be utilized in water purification by removing toxic dyes from wastewater.  相似文献   

9.
Low‐molecular‐weight compounds based on L ‐lysine with alkylpyridinium or ‐imidazolium groups have been synthesized and studied for their gelation behavior in H2O. Most compounds formed gels below a concentration of 2.5 weight‐%, the pyridinium bromide 2a and the 1‐methyl‐1H‐imidazolium bromide 3 even at 0.1 weight‐%. The minimum gel concentration (MGC) necessary for hydrogelation increased with increasing length of the Lys Nα‐alkanoyl chain, but the gelation ability concomitantly decreased. Electron‐microscopic images demonstrated that these hydrogelators create a three‐dimensional network in H2O by entanglement of self‐assembled nanofibers. A fluorescence study with 8‐anilinonaphthalene‐1‐sulfonic acid (ANS) proved that some hydrophobic aggregates are formed at hydrogelator concentrations below an MGC of less than 50 μM (0.004%). FT‐IR, 1H‐NMR, and Fluorescence studies indicated that the driving forces for the self‐assembly into nanofibers are mainly hydrophobic interactions and H‐bonding between amide groups.  相似文献   

10.
The necessity for the development of new antimicrobial agents due to the ever increasing threat from microbes is causing a rapid surge in research. In the present work, we have shown the efficient antimicrobial activity of a series of amino acid-based hydrogelating amphiphiles through alteration in their counterion. The subtle variation in the counterion from chloride to various organic carboxylates had a significant impact on the antimicrobial properties with notable improvement in biocompatibility toward mammalian cells. Incorporation of a hydrophobic moiety in the counterion augmented the antibacterial property of the amphiphilic hydrogelator as minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain, Bacillus subtilis decreased up to 5-fold (with respect to the chloride) in the case of n-hexanoate. These counterion-varied amphiphilic hydrogelators were also found to be effective against fungal strains (Candida albicans and Saccharomyces cerevisiae) where they exhibited MICs in the range of 1.0-12.5 μg/mL. To widen the spectrum of antibacterial activity, particularly against Gram-negative bacteria, silver nanoparticles (AgNPs) were synthesized in situ within the supramolecular assemblies of the carboxylate hydrogelators. These AgNP-amphiphile soft-nanocomposites showed bactericidal property against both Gram-positive and Gram-negative bacteria. Encouragingly, these carboxylate hydrogelators showed superior biocompatibility toward mammalian cells, HepG2 and NIH3T3, as compared to the chloride analogue at a concentration range of 10-200 μg/mL. Importantly, the AgNP composites also showed sufficient viability to mammalian cells. Because of the intrinsic hydrogelation ability of these counterion-varied amphiphiles, the resulting soft materials and the nanocomposites could find applications in biomedicine and tissue engineering.  相似文献   

11.
A new class of efficient hydrogelators has been developed by a simple modification of the peripheral substituents of cyclohexane bis-urea organogelators with hydrophilic hydroxy or amino functionalities. These bis-urea hydrogelators were synthesised in two or three steps using an alternative procedure to the common isocyanate method. Gelation was obtained with organic solvents, water and strongly basic aqueous solutions like 25% ammonia. Hydrogelation was found to depend on a delicate balance between the hydrophobicity of the alkyl chains, hydrophilicity of the terminal substituents and the enantiomeric purity of the compound. The hydrogels consisted of a network of fibers, in which all urea groups are involved in intermolecular hydrogen bonding. Most likely, gelation is driven by hydrophobic interactions of the methylene units, whereas hydrogen bond formation between the urea groups provides the necessary anisotropy of the aggregation and the high thermal stability of the gels.  相似文献   

12.
This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability ( T gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Boc) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration ( C crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X-ray scattering (SANS/SAXS) on the native gel, and a tentative self-assembly model was proposed.  相似文献   

13.
Small molecule peptides and their derivatives are an emerging class of supramolecular hydrogelators that have attracted rapidly growing interest in the fields of drug delivery and regenerative medicine due to their inherent biodegradability and biocompatibility, as well as versatility in molecular design and ease of synthesis. Built upon the directional, intermolecular interactions such as hydrogen bonding and π-π stacking, peptide-based molecular units can associate in aqueous solution into filamentous assemblies of various sizes and shapes. Under appropriate conditions, these filamentous assemblies can percolate into a 3D network with materials properties tailorable for specific biomedical applications. In this review, we survey the literature published over the past three years in the development of peptide-based hydrogelators for biomedical applications. We highlight several representative examples and center our discussion on the fundamentals of molecular design, assembly, and gelation conditions.  相似文献   

14.
A novel class of six different triaryl pyridine N-glycosylamine amphiphiles was synthesised and characterized based on different spectral techniques, such as NMR and mass analysis. Gelation properties in different aromatic and aliphatic solvents were studied and gelation was observed predominantly in aliphatic solvents with CGC of 0.5% (w/v) and is attributed to the presence of long alkyl chain. All the gels thus obtained were studied using FE-SEM and powder XRD techniques which reveal fibrous entanglement of the molecules in the gel state with intermolecular spaces of 3.62 nm and 0.43 nm.  相似文献   

15.
A pyrene‐containing phenylboronic acid (PBA) functionalized low‐molecular‐weight hydrogelator was synthesized with the aim to develop glucose‐sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8–12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL?1. The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π–π stacking, and van der Waals interactions are the key factors for the self‐assembled gelation. The diol‐sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose‐responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose‐induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin‐loaded hydrogel showed thixotropic self‐recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells.  相似文献   

16.
A straightforward method for the solid-supported synthesis of cryptand-like bicyclic peptides (1-5) on a backbone amide linker has been described. For the branching, two novel easily available building blocks, viz. N-(4-methoxytrityl)-N-(2-nitrobenzenesulfonyl)-protected N,N-bis(2-aminoethyl)-beta-alanine (6) and N-(9-fluorenylmethoxycarbonyl) protected iminodiacetic acid monoallyl ester (7), have been employed. The key steps of the synthesis are as follows: (i) stepwise coupling of one amino acid and 6 to the secondary amino group of the linker; (ii) removal of the 2-nitrobenzenesulfonyl group and SPPS by the Fmoc chemistry, using 7 as the penultimate and tert-butoxycarbonyl (Boc) protected glycine as the last amino acid; (iii) removal of the 4-methoxytrityl protection and subsequent SPPS by the Fmoc chemistry; (iv) removal of the allyl and Fmoc groups, followed by cyclization; and (v) removal of the Boc and tert-butyl groups, followed by cyclization. Final cleavage from the support and removal of benzyl-derived protecting groups gives the desired bicyclic products.  相似文献   

17.
This article highlights the aggregation behaviour of potential low molecular weight hydrogelators on attracting surfaces. Our goal was the development of a method, which enables the finding of new hydrogelators that are not easily recognizable as such because they only form instable or no hydrogels in aqueous solution. To this end, a series of negatively charges azo-dyes was synthesized and positive charged glass slides were immersed into their aqueous solutions. All dyes showed supramolecular organization and significant concentration on the attracting glass surface. Microscopic investigations mostly revealed the formation of crystals. However, one compound, (1-(2-n-octylphenylazo)-2-hydroxy-6-naphthalenesulphonate, selectively formed a hydrogel on the surface whereas it does not gel in aqueous solution. This reveals the hydrogel as the stable form of this compound under equilibrium conditions. This method of surface-induced hydrogelation might facilitate the identification of new hydrogelators. Further more, it might also allow the mimicking of surface gelation as a process of biological relevance.  相似文献   

18.
A family of L-lysine-based low-molecular-weight compounds with various positively charged terminals (pyridinium and imidazolium derivatives) was synthesized and its gelation behavior in water was investigated. Most of the compounds can be very easily synthesized in high yields (total yields >90 %), and they function as excellent hydrogelators that form hydrogels below 1 wt %; particularly, N(epsilon)-lauroyl-N(alpha)-[11-(4-tert-butylpyridinium)undecanoyl]-L-lysine ethyl ester (2 c) and N(epsilon)-lauroyl-N(alpha)-[11-(4-phenylpyridinium)undecanoyl]-L-lysine ethyl ester (2 d), which are able to gel water at concentration of only 0.2 wt %. This corresponds to a gelator molecule that entraps more than 20 000 water molecules. All hydrogels are very stable and maintain the gel state for at least 9 months. TEM observations demonstrated that these hydrogelators self-assemble into a nanoscaled fibrous structure; a three-dimensional network is then formed by the entanglement of the nanofibers. An FTIR study in [D(6)]DMSO/D(2)O and in CHCl(3) revealed the existence of intermolecular hydrogen bonding between the amide groups. This was further supported by a (1)H NMR study in [D(6)]DMSO/H(2)O. A luminescence study, in which ANS (1-anilino-8-naphtharenesulfonic acid) was used as a probe, indicated that the hydrogelators self-assemble into nanostructures possessing hydrophobic pockets at a very low concentration. Consequently, it was found that the driving forces for self-assembly into a nanofiber are hydrogel bonding and hydrophobic interactions.  相似文献   

19.
The preparation of supramolecular hydrogels containing various inorganic acids and salts using L-lysine-based hydrogelators is conducted and their thermal stabilities, gel strengths, FT-IR spectra, and electron micrographs are measured. These hydrogelators can form supramolecular hydrogels over a wide pH range and contain inorganic acids and salts. The supramolecular hydrogels based on ester-type hydrogelators have good thermal stabilities (high Tgel), while the hydrogelator with a carboxyl group forms a thermally sensitive gel with high mechanical strength. Furthermore, the gelation mechanism is discussed using FT-IR spectroscopy and TEM observations.  相似文献   

20.
Three new hydrogelators based on the conjugates of three naturally occurring biological building blocks: nucleobase, saccharide, and amino acids, were explored. Being synthesized via a facile solid phase peptide synthesis route, the hydrogelators self‐assemble in water to afford supramolecular nanofibers and hydrogels. Transmission electron microscopy, oscillation rheometry, and circular dichroism reveal that the hydrogels consist of largely helix‐based nanofibers of the widths of 5–12 nm and exhibit storage moduli up to 1 kPa. These hydrogelators also exhibit excellent cell‐compatibility. This work illustrates a new platform for constructing molecular soft materials for nanobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号