首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local atomic structures of liquid and polymerized CO and its decomposition products were analyzed at pressures up to 30 GPa in diamond anvil cells by X‐ray diffraction, pair distribution function (PDF) analysis, single‐crystal diffraction, and Raman spectroscopy. The structural models were obtained by density functional calculations. Analysis of the PDF of a liquid CO‐rich phase revealed that the local structure has a pronounced short‐range order. The PDFs of polymerized amorphous CO at several pressures revealed the compression of the molecular structure; covalent bond lengths did not change significantly with pressure. Experimental PDFs could be reproduced with simulations from DFT‐optimized structural models. Likely structural features of polymerized CO are thus 4‐ to 6‐membered rings (lactones, cyclic ethers, and rings decorated with carbonyl groups) and long bent chains with carbonyl groups and bridging atoms. Laser heating polymerized CO at pressures of 7 to 9 GPa and 20 GPa resulted in the formation of CO2.  相似文献   

2.
The high-pressure response of pentaerythritol crystals has been examined to 10 GPa in diamond-anvil cells using angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy. The results reveal two first-order phase transitions: one at 4.8 GPa from phase I, tetragonal I(), to phase II, orthorhombic Pnn2C2v10, with a small approximately 0.5% volume change, and the other at 7.2 GPa to phase III with an unknown crystal structure. We found that phase I exhibits a large crystallographic anisotropy which rapidly decreases with increasing pressure: the ratio of linear compressibilities between two primary crystal axes decreases from betao= 8.1 at 1 atm to betaP = 2.6 at 4 GPa. We suggest that this apparent decrease in crystal anisotropy is due to the disruption of hydrogen bonding in the (001) plane of phase I and eventually leads to an orthorhombic distortion from a quadrilateral network structure in phase I to a quasi one-dimensional structure in phase II. The crystal structure of phase III exhibits a disordered character, and it is likely a conformational variant of phase II.  相似文献   

3.
The electronic structure of the single component molecular crystal [Ni(ptdt)(2)] (ptdt = propylenedithiotetrathiafulvalenedithiolate) is determined at ambient and high pressure using density functional theory. The electronic structure of this crystal is found to be of the "crossing bands" type with respect to the dispersion of the HOMO and LUMO, resulting in a small, non-zero density of states at the Fermi energy at ambient pressure, indicating that this crystal is a "poor quality" metal, and is consistent with the crystal's resistivity exhibiting a semiconductor-like temperature dependence. The ambient pressure band structure is found to be predominantly one-dimensional, reflecting enhanced intermolecular interactions along the [100] stacking direction. Our calculations indicate that the band structure becomes two-dimensional at high pressures and reveals the role of shortened intermolecular contacts in this phenomenon. The integrity of the molecular structure is found to be maintained up to at least 22 GPa. The electronic structure is found to exhibit a crossing bands nature up to 22 GPa, where enhanced intermolecular interactions increase the Brillouin zone centre HOMO-LUMO gap from 0.05 eV at ambient pressure to 0.15 eV at 22 GPa; this enhanced HOMO-LUMO interaction ensures that enhancement of a metallic state in this crystal cannot be simply achieved through the application of pressure, but rather requires some rearrangement of the molecular packing. Enhanced HOMO-LUMO interactions result in a small density of states at the Fermi energy for the high pressure window 19.8-22 GPa, and our calculations show that there is no change in the nature of the electronic structure at the Fermi energy for these pressures. We correspondingly find no evidence of an electronic semiconducting-metal insulator transition for these pressures, contrary to recent experimental evidence [Cui et al., J. Am. Chem. Soc. 131, 6358 (2009)].  相似文献   

4.
The crystal structure of dithallium carbonate, Tl2CO3 (C2/m, Z = 4), was investigated at pressures of up to 7.4 GPa using single‐crystal X‐ray diffraction in a diamond anvil cell. It is stable to at least 5.82 GPa. All atoms except for one of the O atoms lie on crystallographic mirror planes. At higher pressures, the material undergoes a phase transition that destroys the single crystal.  相似文献   

5.
The effect of pressure on the phase behavior of the liquid crystalline complex [Eu(bta)(3)L(2)] (bta is benzoyltrifluoroacetonate, and L is the Schiff base 2-hydroxy-N-octadecyl-4-tetradecyloxybenzaldimine) was studied by X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy. The pressure was varied between ambient pressure and 8.0 GPa. [Eu(bta)(3)L(2)] exhibits a smectic A (SmA) phase at room temperature. The complex undergoes a transition from the SmA phase to a solid lamellar structure around 0.22 GPa and another transition from the solid lamellar phase to an amorphous state from 1.6 to 3.5 GPa. At low pressures, the smectic layer spacing increases, and the intermolecular distance decreases. Above 3.5 GPa, both the interlamellar and the intermolecular spacings hardly change, but the intensity of X-ray reflections exhibits a remarkable decrease and eventually vanishes. An interpretation of the changes in the molecular structure is given. It was found that less interdigitation of the alkyl chains situated in adjacent layers and/or a full extension of the alkyl chains occurred at low pressures and that the second phase transition was accompanied by a transfer of the hydrogen atom from the nitrogen atom of the imine group to the oxygen atom of the Schiff base ligand. The effect of applying pressure equals that of the lanthanide contraction on the phase behavior.  相似文献   

6.
The single-crystal X-ray structure of Ru(3)(CO)(12) is reported at 8 pressures ranging from 1 atm (0.0 GPa) to 8.14(5) GPa. Although intramolecular bonding parameters remain relatively constant, intramolecular and intermolecular nonbonding contact distances decrease by an average of 4% and 15%, respectively. At 8.14 GPa, O...O, C...O, and C...C intermolecular distances as short as 2.54(4), 2.64(6), and 3.07(4) A, respectively, are observed, and the unit cell compresses to 75% of the ambient pressure volume. Raman and infrared spectroscopic measurements show that carbonyl stretching frequencies shift to higher wavenumber values by as much as 80 cm(-)(1), even though Ru-C and C-O distances stay roughly constant throughout the entire pressure range studied. Compression of the sample to above 18 GPa with laser radiation results in an irreversible transformation due to either decomposition or a total collapse of D(3)(h) molecular geometry accompanied by color darkening.  相似文献   

7.
The structural, electronic, bonding, and elastic properties of the low-temperature orthorhombic phase of NH(3)BH(3) are studied by means of first-principles total energy calculations based on the pseudopotential method. The calculated structural parameters of NH(3)BH(3) are found to be in good agreement with the experimental values. From the band structure calculations, the compound is found to be an indirect bandgap insulator with the bandgap of 5.65 eV (5.90 eV) with LDA(GGA) along the Γ-Z direction. The Mulliken bond population and the charge density distributions are used to analyze the chemical bonding in NH(3)BH(3) . The study reveals that B-H bonds are more covalent than N-H bonds. The elastic constants are predicted for ambient as well as pressures up to 6 GPa, from which theoretical values of all the related mechanical properties such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factors are calculated. It is found that NH(3)BH(3) is mechanically stable at ambient and also external pressures up to 6 GPa. As pressure increases all the calculated elastic moduli of NH(3)BH(3) increase, indicating that the compound becomes more stiffer and hard under pressure. From the ratio of shear modulus to bulk modulus (G/B), we conclude NH(3)BH(3) to be ductile in nature, and the ductility increases with pressure. The present results confirm the experimentally observed less plastic nature of the low-temperature phase of NH(3)BH(3) .  相似文献   

8.
The structures of compressed rubidium polyhydrides, RbH(n) with n>1, and their evolution under pressure are studied using density functional theory calculations. These phases, which start to stabilize at only P = 2 GPa, consist of Rb(+) cations and one or more of the following species: H(-) anions, H(2) molecules, and H(3)(-) molecules. The latter motif, the simplest example of a three-center four-electron bond, is found in the most stable structures, RbH(5) and RbH(3) , which metallize above 200?GPa. At the highest pressures studied, our evolutionary searches find an RbH(6) phase which contains polymeric (H(3)(-))(∞) chains that show signs of one-dimensional liquid-like behavior.  相似文献   

9.
In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P4(3)2(1)2) is preferred in a narrow pressure range of 4-7 GPa. Phase III (P2(1)/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P2(1) at 0 GPa; P2(1)/c at high pressure) comes into play, slightly more stable than phase III in the range of 50-80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P2(1)/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C(6)H(6))(2) dimers are predicted.  相似文献   

10.
Phosphorus oxonitride (PON) is isoelectronic with SiO2 and may exhibit a similar broad spectrum of intriguing properties as silica. However, PON has only been sparsely investigated under high‐pressure conditions and there has been no evidence on a PON polymorph with a coordination number of P greater than 4. Herein, we report a post‐coesite (pc) PON polymorph exhibiting a stishovite‐related structure with P in a (5+1) coordination. The pc‐PON was synthesized using the multianvil technique and characterized by powder X‐ray diffraction, solid‐state NMR spectroscopy, TEM measurements and in situ synchrotron X‐ray diffraction in diamond anvil cells. The structure model was verified by single‐crystal X‐ray diffraction at 1.8 GPa and the isothermal bulk modulus of pc‐PON was determined to K0=163(2) GPa. Moreover, an orthorhombic PON polymorph (o‐PON) was observed under high‐pressure conditions and corroborated as the stable modification at pressures above 17 GPa by DFT calculations.  相似文献   

11.
We report an unexpectedly high chemical stability of molecular solid 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) under static high pressures. In contrast to the high-pressure behavior of the majority of molecular solids, TATB remains both chemically stable and an insulator to 150 GPa--well above the predicted metallization pressure of 120 GPa. Single crystal studies have shown that TATB exhibits pressure-induced Raman changes associated with two subtle structural phase transitions at 28 and 56 GPa. These phase transitions are accompanied by remarkable color changes, from yellow to orange and to dark red with increasing pressure. We suggest that the high-stability of TATB arises as a result of its hydrogen-bonded aromatic two-dimensional (2D) layered structure and highly repulsive interlayer interaction, hindering the formation of 3D networks or metallic states.  相似文献   

12.
A liquid crystal dimer is composed of molecules containing two mesogenic groups linked via a flexible spacer. Initial interest in these materials stemmed from their ability to act as model compounds for semi-flexible main chain liquid crystal polymers but are now of fundamental interest in their own right because their behaviour is significantly different to that of conventional low molar mass liquid crystals. Recently research has begun to focus also on higher monodisperse oligomers such as trimers and tetramers consisting of molecules containing either three or four mesogenic units, respectively, linked via flexible spacers. In this review the most recent developments in our understanding of structure–property relationships in liquid crystal dimers and higher oligomers is discussed.  相似文献   

13.
X-ray irradiation was found to convert H(2)O at pressures above 2 GPa into a novel molecular H(2)-O(2) compound. We used optical Raman spectroscopy to explore the behavior of x-ray irradiated H(2)O samples as a function of pressure, time, and composition. The compound was found to be stable over a period of two years, as long as high pressure conditions (>2 GPa) were maintained. The Raman shifts for the H(2) and O(2) vibrons behaved differently from pure H(2) and O(2) as pressure was increased on the compound up to 70 GPa, indicating that it remains a distinct, molecular compound. Based on spectra taken from different locations in a single sample, it appears that multiple forms of the H(2)-O(2) compound exist. The structure and composition of the starting material plays an important role in compound formation, as we found that hydrogen-filled ice clathrate C(2) (H(2))H(2)O did not undergo the same dissociation as observed in ice VII upon x-ray irradiation until pressure was increased to above 10 GPa.  相似文献   

14.
The phase diagram and polymorphism of oxygen at high pressures and temperatures are of great interest to condensed matter and earth science. X-ray diffraction and Raman spectroscopy of oxygen using laser and resistively heated diamond anvil cells reveal that the molecular high-pressure phase ε-O(2), which consists of (O(2))(4) clusters, reversibly transforms in the pressure range of 44 to 90 GPa and temperatures near 1000 K to a new phase with higher symmetry. The data suggest that this new phase (η') is isostructural to a phase η reported previously at lower pressures and temperatures, but differs from it in the P-T range of stability and type of intermolecular association. The melting curve increases monotonically up to the maximum pressures studied (~60 GPa). The structure factor of the fluid measured as a function of pressure to 58 GPa shows continuous changes toward molecular dissociation.  相似文献   

15.
Pressure, as a thermodynamic parameter, provides an appropriate method to detect weak intermolecular interactions. The C–H···H–B dihydrogen bond is so weak that the experimental evidence of this interaction is still limited. A combination of in situ high pressure Raman spectra and angle-dispersive X-ray diffraction(ADXRD) experiments was utilized to explore the dihydrogen bonds in dimethylamine borane(DMAB). Both Raman and ADXRD measurements suggested that the crystal structure of DMAB is stable in the pressure region from 1 atm(1 atm=1.01325×10~5 Pa) to 0.54 GPa. The red shift of CH stretching and CH_3 distortion modes gave strong evidence for the existence of C–H···H–B dihydrogen bonds. Further analysis of Raman spectra and Hirshfeld surface confirmed our proposal. This work provided a deeper understanding of dihydrogen bonds.And we wish that high pressure could be applied to identify other unconfirmed hydrogen or dihydrogen bond.  相似文献   

16.
The first organically templated tin(IV) phosphate has been isolated and its structure solved from powder X-ray diffraction data; it exhibits a one-dimensional inorganic network built up from chains of trimers of tin(IV) octahedra on which phosphate tetrahedral groups are grafted interacting with water molecules and organic moieties.  相似文献   

17.
Atsushi Yoshizawa 《Liquid crystals》2017,44(12-13):1877-1893
ABSTRACT

Chirality induces structural frustration in liquid crystal systems, producing various kinds of chiral frustrated phases, for example, twist grain boundary (TGB) phases, blue phases (BPs) and dark conglomerate (DC) phases. Almost all molecules exhibiting these frustrated phases have a rigid shape. Especially, a bent–core unit is regarded as a key structure for BPs and DC phases. This paper describes that some flexible liquid crystal oligomers being far from a rigid bent–core molecule stabilise these phases. The LC oligomers have a supermolecular structure in which mesogenic units are connected via flexible spacers. By designing intermolecular interactions, they can exhibit various molecular packing structures in the liquid-crystalline phases as follows: chiral dimers inducing TGB phases, U-shaped and T-shaped oligomers stabilising BPs and achiral liquid crystal trimers exhibiting DC phases. I discuss how the designed liquid crystal oligomers produce the chiral frustrated phases.  相似文献   

18.
The crystal structure and the electronic properties of YbGa2 realising a CaIn2 type atomic arrangement were characterised at ambient conditions using single crystal X‐ray diffraction data and magnetic susceptibility measurements at ambient pressure. Pressure‐induced changes of structural and electronic properties of YbGa2 were measured by means of angle‐dispersive X‐ray powder diffraction and XANES at the Yb LIII threshold. At pressures above 22(2) GPa, YbGa2 undergoes a structural phase transition into a high pressure modification with a UHg2 type crystal structure. Parallel to the pressure‐induced structural alterations, ytterbium in YbGa2 undergoes an increase of the oxidation state from +2 at ambient conditions to +3 in the high‐pressure phase. Quantum chemical calculations of the Electron‐Localisation‐Function confirm that the phase transition is associated with a conversion of the three‐dimensional gallium network of the low‐pressure crystal structure into two‐dimensional gallium layers in the high‐pressure modification.  相似文献   

19.
Dielectric properties of four methacrylate polymers (methyl, ethyl, n-butyl and n-octyl) were studied in the frequency range 0.0001 cps–300 kcps at temperatures above and below the glass transition temperature and at various pressures up to 2500 atm. At temperatures well above Tg a single relaxation peak (α′ peak) was observed in the case of the higher n-alkyl methacrylates. However, this peak was split into two peaks, α and β, with decrease in temperature or increase in pressure. The molecular motions corresponding to the α and the β relaxation processes are the micro-Brownian motions of amorphous main chains and of flexible side chains, respectively. From the temperature and the pressure dependence of the average dielectric relaxation time of these polymers the single relaxation process (the α′ process) was attributed to the micro-Brownian motion of the main chain coupled with that of the side chain. The effects of temperature and pressure on the d.c. conductivity of these polymers were also studied.  相似文献   

20.
Electronic structure calculations have been used to determine and compare the thermodynamics of H(2) release from ammonia borane (NH(3)BH(3)), lithium amidoborane (LiNH(2)BH(3)), and sodium amidoborane (NaNH(2)BH(3)). Using two types of exchange correlation functional we show that in the gas-phase the metal amidoboranes have much higher energies of complexation than ammonia borane, meaning that for the former compounds the B-N bond does not break upon dehydrogenation. Thermodynamically however, both the binding energy for H(2) release and the activation energy for dehydrogenation are much lower for NH(3)BH(3) than for the metal amidoboranes, in contrast to experimental results. We reconcile this by also investigating the effects of dimer complexation (2×NH(3)BH(3), 2×LiNH(2)BH(3)) on the dehydrogenation properties. As previously described in the literature the minimum energy pathway for H(2) release from the 2×NH(3)BH(3) complex involves the formation of a diammoniate of diborane complex ([BH(4)](-)[NH(3)BH(2)NH(3)](+)). A new mechanism is found for dehydrogenation from the 2×LiNH(2)BH(3) dimer that involves the formation of an analogous dibroane complex ([BH(4)](-)[LiNH(2)BH(2)LiNH(2)](+)), intriguingly it is lower in energy than the original dimer (by 0.13 eV at ambient temperatures). Additionally, this pathway allows almost thermoneutral release of H(2) from the lithium amidoboranes at room temperature, and has an activation barrier that is lower in energy than for ammonia borane, in contrast to other theoretical research. The transition state for single and dimer lithium amidoborane demonstrates that the light metal atom plays a significant role in acting as a carrier for hydrogen transport during the dehydrogenation process via the formation of a Li-H complex. We posit that it is this mechanism which is responsible, in condensed molecular systems, for the improved dehydrogenation thermodynamics of metal amidoboranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号