首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.  相似文献   

2.
铜族金属与完整及氮掺杂石墨烯的相互作用   总被引:1,自引:0,他引:1  
基于广义梯度密度泛函理论和周期平板模型,研究了铜族金属单原子和双原子簇与完整及氮掺杂石墨烯的结合情况.结果表明,氮掺杂后石墨烯的电子结构特性由半金属性变为金属性;铜族金属在完整及石墨型氮掺杂石墨烯上的吸附较弱,结合能约为0.5eV,而在吡啶型氮掺杂和吡咯型氮掺杂石墨烯上有较强的化学吸附,结合能一般大于1eV;吡咯型氮掺杂后的构型不稳定,金属原子及簇与包含该结构的石墨烯衬底作用时会使其向吡啶型氮掺杂转变,并最终得到基于吡啶型氮掺杂的稳定吸附构型.Mulliken电荷布居分析显示,吸附在吡啶型氮掺杂石墨烯上的金属单原子与金属双原子簇带电性质相反.态密度及轨道分析表明,Cu与吡啶型氮掺杂石墨烯空位处留有悬挂键的三个原子成键,而Au与其中两个C原子成键.  相似文献   

3.
Lithium (Li) metal is the most promising electrode for next-generation rechargeable batteries. However, the challenges induced by Li dendrites on a working Li metal anode hinder the practical applications of Li metal batteries. Herein, nitrogen (N) doped graphene was adopted as the Li plating matrix to regulate Li metal nucleation and suppress dendrite growth. The N-containing functional groups, such as pyridinic and pyrrolic nitrogen in the N-doped graphene, are lithiophilic, which guide the metallic Li nucleation causing the metal to distribute uniformly on the anode surface. As a result, the N-doped graphene modified Li metal anode exhibits a dendrite-free morphology during repeated Li plating and demonstrates a high Coulombic efficiency of 98 % for near 200 cycles.  相似文献   

4.
The most successful electrochemical conversion of ammonia from dinitrogen molecule reported to date is through a Li mediated mechanism. In the framework of the above fact and that Li anchored graphene is an experimentally feasible system, the present work is a computational experiment to identify the potential of Li anchored graphene as a catalyst for N2 to NH3 conversion as a function of (a) minimum number of Li atoms needed for anchoring on graphene sheets and (b) the role of chemical modification of graphene surfaces. The studies bring forth an understanding that Li anchored graphene sheets are potential catalysts for ammonia conversion with preferential adsorption of N2 through end-on configuration on Li atoms anchored on doped and pristine graphene surfaces. This mode of adsorption being characteristic of Nitrogen Reduction Reaction (NRR) through enzymatic pathway, examination of the same followed by analysis of electronic properties demonstrates that tri-Li atoms (Tri Atom Catalysts, TACs) are more efficient as catalysts for NRR as compared to two Li atoms (Di Atom Catalysts, DACs). Either way, the rate determining step was found to be *NH2→*NH3 step (mixed pathway) with ΔGmax=1.02 eV and *NH2−*NH3→*NH2 step (enzymatic pathway) with ΔGmax=1.11 eV for 1B doped TAC and DAC on graphene sheet, respectively. Consequently, this work identifies the viability of Li anchored graphene based 2-D sheets as hetero-atom catalyst for NRR.  相似文献   

5.
The toxic gases,such as CO and NO,are highly dangerous to human health and even cause the death of person and animals in a tiny amount.Therefore,it is very necessary to develop the toxic gas sensors that can instantly monitor these gases.In this work,we have used the first-principles calculations to investigate adsorption of gases on defective graphene nanosheets to seek a suitable material for CO sensing.Result indicates that the vancancy graphene can not selectivly sense CO from air,because O2 in air would disturb the sensing signals of graphene for CO,while the nitrogen-doped graphene is an excellent candidate for selectivly sensing CO from air,because only CO can be chemisorbed on the pyridinic-like N-doped graphene accompanying with a large charge transfer,which can serve as a useful electronic signal for CO sensing.Even in the environment with NO,the N-doped graphene can also detect CO selectively.Therefore,the N-doped graphene is an excellent material for selectively sensing CO,which provides useful information for the design and fabrication of the CO sensors.  相似文献   

6.
The formation mechanism of bipyridyl molecule catalyzed by nickel catalyst with pyridine precursor has been studied using density functional theory calculations. The formation of bipyridyl on Ni(111) surface from two pyridine molecules is considered as the initial process of N-doped graphene growth, and the minimum energy pathway for the formation has been investigated in detail. The whole formation processes mainly includes three steps, i.e., the dehydrogenation of the first pyridine, adsorption and dehydrogenation of the second pyridine, and formation of the bipyridyl molecule. It is found that the C-H bond of pyridine could be selectively dissociated while the C-C and C-N bond connections are retained during the catalytic processes. The N-doped graphene formed by pyridine only contains pyridine-like nitrogen atoms, suggesting a possible way to produce N-doped graphene with pure pyridine-like nitrogen atoms. The comparison of formation mechanisms between bipyridyl and biphenyl molecules was carried out, and the results imply a lower temperature process for synthesis of N-doped graphene from pyridine than that for graphene from benzene.  相似文献   

7.
Density functional theory (including van der Waals correction with the PBE‐D functional) is applied to the study of 4‐chlorophenol (4‐CP) adsorption on graphene oxide (GO), A‐doped graphene (A = N, B), and pristine graphene and test their possible application for 4‐CP removal. Results show that on GO adsorption is improved by the hydrogen bond interactions between the adsorbents and 4‐CP, suggesting that functionalized graphene is a preferable alternative than pristine graphene for 4‐CP removal. In addition, the stability of hydrogen bonds is confirmed by molecular dynamics calculations using the PM6 potential. Without hydrogen bonds, A‐doped graphene models show a comparable performance for 4‐CP removal than pristine graphene. Finally, even in a solvent medium, 4‐CP adsorption is strong. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
A fundamental understanding of the properties of various metal/graphene nanostructures is of great importance for realising their potential applications in electronics and spintronics. The electronic and magnetic properties of three metal/graphene adducts (metal = Li, Co or Fe) are investigated using first-principles calculation. It is predicated that the metal/graphene adducts have strong affinity to aromatic molecule 1,2-dichlorobenzene (DCB), and the resultant DCB-metal/graphene sandwich structures are much more stable than the simple DCB/graphene adduct. Importantly, it is found that the adsorption of DCB slightly enhances the magnetic moment of the Co/graphene, but turns the Fe/graphene from magnetic to nonmagnetic. A detailed theoretical explanation of the different magnetic properties of the DCB/Co/graphene and DCB/Fe/graphene is achieved based on their different d-band splitting upon DCB adsorption. In addition, the transport property study indicates that the Fe/graphene is a better sensing material for DCB than the pristine graphene.  相似文献   

9.
Nitrogen doping is a promising way to modulate the electrical properties of graphene to realize graphene-based electronics and promise fascinating properties and applications.Herein,we report a method to noncovalently assembly titanium(Ⅳ) bis(ammoniumlactato) dihydroxide(Ti complex) on nitrogen-doped graphene to create a reliable hybrids which can be used as a reversible chemical induced switching.As the adsorption and desorption of Ti complex in sequential treatments,the conductance of the nitrogen-doped graphene transistors was finely modulated.Control experiments with pristine graphene clearly demonstrated the important effort of the nitrogen in this chemical sensor.Under optimized conditions,nitrogen-doped graphene transistors open up new ways to develop multifunctional devices with high sensitivity.  相似文献   

10.
Density functional theory calculations were carried out to investigate the adsorption behaviors of O3 molecules on the undoped and N-doped TiO2/MoS2 nanocomposites. With the inclusion of vdW interactions, which correctly account the long-range dispersion energy, the adsorption energies and final geometries of O3 molecules on the nanocomposite surfaces were improved. For O3 molecules on the considered nanocomposites, the binding sites were located on the fivefold coordinated titanium atoms of the TiO2 anatase. The structural properties of the adsorption systems were examined in view of the bond lengths and bond angles. The variation of electronic structures was also discussed in view of the density of states, molecular orbitals and distribution of spin densities. The results suggest that the adsorption of the O3 molecule on the N-doped TiO2/MoS2 nanocomposite is more favorable in energy than that on the pristine one, indicating that the N-doped nanocomposite has higher sensing capability than the pristine one. This implies that the N-doped TiO2/MoS2 nanocomposite would be an ideal O3 gas sensor. However, our calculations thus provide a theoretical basis for the potential applications of TiO2/MoS2 nanocomposites as efficient O3 sensors, leading to very interesting results in the context of air quality measurement.  相似文献   

11.
Interfacing DNA oligonucleotides with graphene-based materials, especially graphene oxide, has produced many new sensors and devices. Since graphene oxide is an excellent fluorescence quencher, fluorescently labeled DNAs (probes) are nearly fully quenched upon adsorption. Addition of the complementary DNA results in probe desorption and fluorescence enhancement. Aside from its analytical applications, this system provides a fascinating topic for biointerface science. DNA can be adsorbed by graphene oxide via π–π stacking and hydrogen bonding, while it must overcome electrostatic repulsion at the same time. The mechanism of DNA-induced probe desorption has also been a topic of extensive discussion. In this article, DNA adsorption and desorption reactions and interactions with graphene oxide and related materials (e.g. graphene) are reviewed based on the current understandings. A few representative applications based on these processes are also described briefly.  相似文献   

12.
The mechanism of Li adsorption on a graphene–fullerene (graphene–C60) hybrid system has been investigated using density functional theory (DFT). The adsorption energy for Li atoms on the graphene–C60 hybrid system (?2.285 eV) is found to be higher than that on bare graphene (?1.375 eV), indicating that the Li adsorption on the former system is more stable than on the latter. This is attributed to the high affinity of Li atoms to C60 and the charge redistribution that occurs after graphene is mixed with C60. The electronic properties of the graphene–C60 system such as band structure, density of states, and charge distribution have been characterized as a function of the number of Li atoms adsorbed in comparison to those of the pure graphene and C60. Li adsorption is found to preferentially occur on the C60 side due to the high adsorption energy of Li on C60, which imparts a metallic character to the C60 in the graphene–C60 hybrid system.  相似文献   

13.
As a close relative to graphene, silicene is advanced in high lithium capacity, yet attracting various manipulation strategies to promote its role in energy storage. Following grain boundary (GB) engineering route as widely used in graphene studies, in this work, first-principles calculations were performed to investigate adsorption and diffusion behaviors of lithium on silicene with GBs of 4|8 or 5|5|8 defects. In both GB forms, donation of the Li 2s electron to the GBs significantly increases the Li adsorption energy, whereas small energy barriers facilitate the Li migration on the silicene surface. Furthermore, the large hole of GB(4-8) also permits easy penetration of the Li ions through the defective silicene sieve. These important features demonstrate GBs are beneficial for enhancing capacity and charge speed of the Li batteries. Thus, superior anodes made of silicene with GBs are expected to serve a key solution for future energy storages.  相似文献   

14.
An artificial solid electrolyte interface (SEI) of a graphene composite lithium salt can inhibit the growth of dendrites by driving the lithium deposition behavior on the surface of the lithium metal anode. The first-principle method was used to calculate the graphene/lithium nitride SEI, including the structural form and stability of intrinsic (G-Li3N), single-vacancy defect (SVG-Li3N), and double-vacancy defect (DVG-Li3N) graphene heterostructure. The adsorption and migration behavior of lithium ions on the heterostructure surface and the interface were also calculated. This study showed that the modification of double-vacancy defect graphene improved the stability of the heterostructure, and the adhesion work of the composite SEI is the highest. The modification of defective graphene increases the adsorption energy of lithium atoms on the surface and interface of the heterostructure: the strongest adsorption of Li atoms on the single-vacancy defect region of the heterostructure, the opposition migration pathway of Li atoms on the surface and interface of the DVG-Li3N heterostructure, and the decrease diffusion energy of Li atoms on the surface and interface of the DVG-Li3N heterostructure. A composite layered SEI of graphene and Li3N was constructed to inhibit dendritic growth by adjusting the deposition behavior of lithium atoms.  相似文献   

15.
First-principles calculations were firstly employed to investigate the adsorption of methanol on pristine and X-doped phosphorene (X=B, C, N and O). The N and O doping improved the adsorption of phosphorene with CH3OH gas molecule, while B and C doping were almost not beneficial.  相似文献   

16.
Vertically aligned few layered graphene (FLGs) nanoflakes were synthesized by microwave plasma deposition for various time durations ranging from 30 to 600 s to yield graphene films of varying morphology, microstructure and areal/edge density. Their intrinsic electrochemical properties were explored using Fe(CN)6 3?/4? and Ru(NH3)6 3+/2+ redox species. All the FLG electrodes demonstrate fast electron transfer kinetics with near ideal ΔEp values of 60–65 mV. Using a relationship between electron transfer rate and edge plane density, an estimation of the edge plane density was carried out which revealed a moderation of edge plane density with increase in growth time. The pristine FLGs also possess excellent electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline solutions. This ORR activity can be further enhanced by exposing the pristine FLGs to nitrogen electron cyclotron resonance plasma. The metal free N-doped FLGs exhibit much higher electrocatalytic activity towards ORR than pristine FLGs with higher durability and selectivity than Pt-based catalysts. The excellent electrochemical performance of N-doped FLGs is explained in terms of enhanced edge plane exposure, high content of pyridinic nitrogen and an increase in the electronic density of states.  相似文献   

17.
采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。  相似文献   

18.
Density-functional calculations of the adsorption of molecular hydrogen on a planar graphene layer and on the external surface of a (4,4) carbon nanotube, undoped and doped with lithium, have been carried out. Hydrogen molecules are physisorbed on pure graphene and on the nanotube with binding energies about 80-90 meV/molecule. However, the binding energies increase to 160-180 meV/molecule for many adsorption configurations of the molecule near a Li atom in the doped systems. A charge-density analysis shows that the origin of the increase in binding energy is the electronic charge transfer from the Li atom to graphene and the nanotube. The results support and explain qualitatively the enhancement of the hydrogen storage capacity observed in some experiments of hydrogen adsorption on carbon nanotubes doped with alkali atoms.  相似文献   

19.
Micro-size oil adsorbents are effective for the rapid remediation of special oil spills. Here, N-doped reduced graphene oxide(RGO) microspheres(ca. 150 μm in diameter) with a local radially aligned and porous structure are fabricated by combining electrospray-freeze-drying with thermal treatment for rapid separation of oil-water. Owing to its hydrophobic/oleophilic properties and oriented structure, the N-doped RGO microspheres achieve high capacities and fast adsorption rates for a variety of oils and organic solvents. Furthermore, excellent oil-water separation performance on floating oil/oil-water emulsions and stable cyclic adsorption capacities are obtained for the local radially aligned and porous microsphere. Therefore, N-doped RGO microspheres with the unique porous structure have the potential for the remediation of oily sewage and oil spills.  相似文献   

20.
Understanding the solution-phase dispersion of pristine, unfunctionalized graphene is important for the production of conducting inks and top-down approaches to electronics. This process can also be used as a higher-quality alternative to chemical vapor deposition. We have developed a theoretical framework that utilizes molecular dynamics simulations and the kinetic theory of colloid aggregation to elucidate the mechanism of stabilization of liquid-phase-exfoliated graphene sheets in N-methylpyrrolidone (NMP), N,N'-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL), and water. By calculating the potential of mean force between two solvated graphene sheets using molecular dynamics (MD) simulations, we have found that the dominant barrier hindering the aggregation of graphene is the last layer of confined solvent molecules between the graphene sheets, which results from the strong affinity of the solvent molecules for graphene. The origin of the energy barrier responsible for repelling the sheets is the steric repulsions between solvent molecules and graphene before the desorption of the confined single layer of solvent. We have formulated a kinetic theory of colloid aggregation to model the aggregation of graphene sheets in the liquid phase in order to predict the stability using the potential of mean force. With only one adjustable parameter, the average collision area, which can be estimated from experimental data, our theory can describe the experimentally observed degradation of the single-layer graphene fraction in NMP. We have used these results to rank the potential solvents according to their ability to disperse pristine, unfunctionalized graphene as follows: NMP ≈ DMSO > DMF > GBL > H(2)O. This is consistent with the widespread use of the first three solvents for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号