首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a novel approach which considers the positions of defects in graphene structure to describe how electronic density of states and the type of graphene conductivity are affected by electron scattering by certain configurations of foreign atoms in graphene matrix. Despite the fact that there is still insufficient experimental data concerning the effect of short-range order on graphene physical properties, we assume that local disorder can play a decisive role in the low-temperature behavior of graphene’s electronic properties.  相似文献   

2.
通过密度泛函理论研究了Ag、Au、Pt原子在完美和点缺陷(包括N掺杂、B掺杂、空位点缺陷)石墨烯上的吸附以及这些体系的界面性质.研究表明Ag、Au不能在完美的石墨烯上吸附,N、B掺杂增强了三种金属与石墨烯之间的相互作用.而空位点缺陷诱发三种金属在石墨烯上具有强化学吸附作用.通过电子结构分析发现,N掺杂增强了Au、Pt与C形成的共价键,而Au、Ag与B形成了化学键.空位点缺陷不仅是金属原子的几何固定点,同时也增加了金属原子和碳原子之间的成键.增强贵金属原子和石墨烯相互作用的顺序是:空位点缺陷>>B掺杂>N掺杂.  相似文献   

3.
In-depth probing of the surface electronic structure on solid oxide fuel cell (SOFC) cathodes, considering the effects of high temperature, oxygen pressure, and material strain state, is essential toward advancing our understanding of the oxygen reduction activity on them. Here, we report the surface structure, chemical state, and electronic structure of a model transition metal perovskite oxide system, strained La(0.8)Sr(0.2)CoO(3) (LSC) thin films, as a function of temperature up to 450 °C in oxygen partial pressure of 10(-3) mbar. Both the tensile and the compressively strained LSC film surfaces transition from a semiconducting state with an energy gap of 0.8-1.5 eV at room temperature to a metallic-like state with no energy gap at 200-300 °C, as identified by in situ scanning tunneling spectroscopy. The tensile strained LSC surface exhibits a more enhanced electronic density of states (DOS) near the Fermi level following this transition, indicating a more highly active surface for electron transfer in oxygen reduction. The transition to the metallic-like state and the relatively more enhanced DOS on the tensile strained LSC at elevated temperatures result from the formation of oxygen vacancy defects, as supported by both our X-ray photoelectron spectroscopy measurements and density functional theory calculations. The reversibility of the semiconducting-to-metallic transitions of the electronic structure discovered here, coupled to the strain state and temperature, underscores the necessity of in situ investigations on SOFC cathode material surfaces.  相似文献   

4.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析.缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附.计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

5.
Since the discovery of graphene many studies focused on its functionalization by different methods. These strategies aim to find new pathways to overcome the main drawback of graphene, a missing band-gap, which strongly reduces its potential applications, particularly in the domain of nanoelectronics, despite its huge and unequaled charge carrier mobility. The necessity to contact this material with a metal has motivated a lot of studies of metal/graphene interactions and has led to the discovery of the intercalation process very early in the history of graphene. Intercalation, where the deposited atoms do not stay at the graphene surface but intercalate between the top layer and the substrate, may happen at room temperature or be induced by annealing, depending of the chemical nature of the metal. This kind of mechanism was already well-known in the earlier Graphite Intercalation Compounds (GICs), particularly famous for one current application, the Lithium-ion Battery, which is simply an application based on the intercalation of Lithium atoms between two sheets of graphene in a graphite anode. Among numerous discoveries the GICs community also found a way to obtain graphite with superconducting properties by using intercalated alkali metals. Graphene is now a playground to “revisit” and understand all these mechanisms and to discover possible new properties of graphene induced by intercalation. For example, the intercalation process may be used to decouple the graphene layer from its substrate, to change its doping level or even, in a more general way, to modify its electronic band structure and the nature of its Dirac fermions. In this paper we will focus on the functionalization of graphene by using intercalation of metal atoms but also of molecules. We will give an overview of the induced modifications of the electronic band structure possibly leading to spin-orbit coupling, superconductivity, …We will see how this concept of functionalization is also now used in the framework of other 2D materials beyond graphene and of van der Waals heterostructures based on these materials.  相似文献   

6.
采用基于密度泛函理论的投影缀加波方法研究了Au、Ag、Cu吸附在缺陷石墨烯单侧和双侧的体系,对吸附体系的吸附能、磁性、电荷转移和电子结构进行了计算和分析. 缺陷石墨烯吸附Au、Ag、Cu体系的吸附能比本征石墨烯增加2 eV以上,说明三种金属原子更容易吸附在缺陷位置;吸附体系的电荷密度差分和电子结构的结果表明,Au、Ag、Cu与缺陷石墨烯之间均为化学吸附. 计算吸附体系的磁性发现,单侧吸附时三种吸附体系均有磁性,磁矩大约为1μB;双侧吸附时,三种吸附体系磁矩大约为2μB.  相似文献   

7.
以过渡金属为催化衬底的化学气相沉积法(Chemical Vapor Deposition,CVD)已经可以制备与机械剥离样品相媲美的石墨烯,是实现石墨烯工业应用的关键技术之一。原子尺度理论研究能够帮助我们深刻理解石墨烯生长机理,为实验现象提供合理的解释,并有可能成为将来实验设计的理论指导。本文从理论计算的角度,总结了各种金属衬底在石墨烯CVD生长过程中的各种作用与相应的机理,包括在催化碳源裂解、降低石墨烯成核密度等,催化加快石墨烯快速生长,修复石墨烯生长过程中产生的缺陷,控制外延生长石墨烯的晶格取向,以及在降温过程中石墨烯褶皱与金属表面台阶束的形成过程等。在本文最后,我们对当前石墨烯生长领域中亟需解决的理论问题进行了深入探讨与展望。  相似文献   

8.
非金属碳基催化剂因其具有合成简单、结构稳定、比表面积大、可调控性强等特点受到了研究者的关注,已成为最活跃的研究领域之一。以二维、单原子层、六方结构的碳为基础的石墨烯和其高度氧化形态——氧化石墨烯是一类新兴的碳基材料。这类材料在催化领域的应用在近五年内才刚刚兴起。此类材料可用于烃类转化、有机化学合成、能源转化等多种催化反应,本文主要综述了采用化学氧化还原法制备的石墨烯和氧化石墨材料为催化剂的各类催化反应的最新研究进展。  相似文献   

9.
Armchair型石墨纳米带的电子结构和输运性质   总被引:1,自引:0,他引:1  
利用第一性原理的电子结构和输运性质计算方法, 研究了扶手椅(armchair)型单层石墨纳米带(具有锯齿边缘)的电子结构和输运性质及其边缘空位缺陷效应. 研究发现, 完整边缘的扶手椅型石墨纳米带是典型的金属性纳米带, 边缘空位缺陷的存在对扶手椅型纳米带能带结构有一定的影响,但并不彻底改变其金属性特征.  相似文献   

10.
Oxygen reduction reaction (ORR) is the bottleneck of metal-air batteries and fuel cells. Strain regulation can change the geometry and adjust the surface charge distribution of catalysts, which is a powerful strategy to optimize the ORR activity. The introduction of controlled strain to the material is still difficult to achieve. Herein, we present a temperature-pressure-induced strategy to achieve the controlled lattice strain for metal coordination polymers. Through the systematic study of the strain effect on ORR performance, the relationship between geometric and electronic effects is further understood and confirmed. The strained Co-DABDT (DABDT=2,5-diaminobenzene-1,4-dithiol) with 2 % lattice compression exhibits a superior half-wave potential of 0.81 V. Theoretical analysis reveals that the lattice strain changes spin-charge densities around S atoms for Co-DABDT, and then regulates the hydrogen bond interaction with intermediates to promote the ORR catalytic process. This work helps to understand the catalytic mechanism from the atomic level.  相似文献   

11.
为研究纳米线的形成机理,通过密度泛函理论(DFT)研究了贵金属(铂)在脱质子化1,3-环加成石墨烯上的吸附.研究发现:(1)吸附在1,3-环加成石墨烯上的铂原子引起该结构的脱质子化过程并形成脱质子化1,3-环加成石墨烯;(2)贵金属在脱质子化1,3-环加成石墨烯上的锚定位是氮原子邻位的碳原子,这在邻位碳原子的平均巴德电荷分析(高达1.0e)中得到进一步的证实;(3)铂原子在相邻的脱质子化吡啶炔单元上形成金属纳米线,并且该纳米线比相应的铂团簇稳定得多;(4)电子结构分析表明,铂的吸附并没有从根本上改变脱质子化1,3-环加成石墨烯的电子性质.铂金属的掺杂使得Pt6团簇吸附形成的复合物呈现金属性,而Pt6纳米线形成的复合物则为半金属性.  相似文献   

12.
纳米结构中的晶格应变作为基础研究课题的势头日益增强。可以设计纳米颗粒的表面晶格以产生应变或者其他结构变化,使其原子位置偏离正常的晶格点,进而影响纳米颗粒的电子结构和催化性能。本文首先介绍了金属纳米粒子的不同应变源,重点介绍了不同应变基本结构的合成。讨论了晶格应变的表征手段及其在催化领域应用的研究进展。最后介绍了应变金属纳米颗粒合成和催化应用所面临的挑战,并对未来的研究方向进行了展望。  相似文献   

13.
Proton plays a critical role in electrochemical systems to control electrochemical reactivity or isotopic enrichment. Graphene is intensively investigated owing to its unique electronic structure and device fabrication. Through the structural tunability of graphitic materials by chemical or physical modification of the surface, graphene is revealed to be an ideal material for proton manipulation. Here, we review the use of graphene or graphitic materials toward the manipulation of proton with regard to the following three points. (1) Electronic properties of graphene: The electronic band structure of graphene can be modified by metal contacts owing to the interaction with a metal surface. (2) Molecular control of graphitic interface: The chemical structure of graphene can be modified, as is done in molecular chemistry, and can be used as a catalytic platform. (3) Proton conduction by graphene: Proton transport through a graphene layer occurs with a unique mechanism such as tunneling. We provide a perspective on the use of graphitic materials toward controlling the behavior of protons on the basis of the aforementioned points. From the above, graphene can be used as a platform for proton manipulation.  相似文献   

14.
Chemical decoration of defects is an effective way to functionalize graphene and to study mechanisms of their interaction with environment. We monitored dynamic atomic processes during the formation of a rotary Si trimer in monolayer graphene using an aberration‐corrected scanning‐transmission electron microscope. An incoming Si atom competed with and replaced a metastable C dimer next to a pair of Si substitutional atoms at a topological defect in graphene, producing a Si trimer. Other atomic events including removal of single C atoms, incorporation and relocation of a C dimer, reversible C? C bond rotation, and vibration of Si atoms occurred before the final formation of the Si trimer. Theoretical calculations indicate that it requires 2.0 eV to rotate the Si trimer. Our real‐time results provide insight with atomic precision for reaction dynamics during chemical doping at defects in graphene, which have implications for defect nanoengineering of graphene.  相似文献   

15.
The binding of a single metal atom (Pt, Pd, Au, and Sn) nearby a single-vacancy (SV) on the graphene is investigated using the first-principles density-functional theory. On the pristine graphene (pri-graphene), the Pt, Pd, and Sn prefer to be adsorbed at the bridge site, while Au prefers the top site. On the graphene with a single-vacancy (SV-graphene), all the metal atoms prefer to be trapped at the vacancy site and appear as dopants. However, the trapping abilities of the SV-graphene are varied for different metal atoms, i.e., the Pt and Pd have the larger trapping zones than do the others. The diffusion barrier of a metal atom on the SV-graphene is much higher than that on the pri-graphene, and the Pt atom has the largest diffusion barrier from the SV site to the neighboring bridge sites. On the SV-graphene, more electrons are transferred from the adatoms (or dopants) to the carbon atoms at the defect site, which induces changes in the electronic structures and magnetic properties of the systems. This work provides valuable information on the selectivity of lattice vacancy in trapping metal atoms, which would be vital for the atomic-scale design of new metal-carbon nanostructures and graphene-based catalysts.  相似文献   

16.
The interaction of small molecules (CCl(4), CS(2), H(2)O, and acetone) with single-layer graphene (SLG) has been studied under steady-state conditions using infrared multiple-internal-reflection spectroscopy. Adsorption results in a broad and intense absorption band, spanning the ~200 to 500 meV range, which is attributed to electronic excitation. This effect, which has not previously been reported for SLG, has been further investigated using dispersion-corrected density functional theory to model the adsorption of H(2)O on SLG supported on an SiO(2) substrate. However, the ideal and defect-free model does not reproduce the observed adsorption-induced electronic transition. This and other observations suggest that the effect is extrinsic, possibly the result of an adsorption-induced change in the in-plane strain, with important differences arising between species that form liquid-like layers under steady-state conditions and those that do not. Furthermore, the C-H stretching modes of CH(2) groups, incorporated in the SLG as defects, undergo nonadiabatic coupling to the electronic transition. This leads to pronounced antiresonance effects in the line shapes, which are analyzed quantitatively. These results are useful in understanding environmental effects on graphene electronic structure and in demonstrating the use of the vibrational spectroscopy of H-containing defects in characterizing SLG structure.  相似文献   

17.
The displacement of molecular structures from their thermodynamically most stable state by imposition of various types of electronic and conformational constraints generates highly strained entities that tend to release the accumulated strain energy by undergoing either structural changes or chemical reactions. The latter case amounts to strain‐induced reactivity (SIR) that may enforce specific chemical transformations. A particular case concerns dynamic covalent chemistry which may present SIR, whereby reversible reactions are activated by coupling to a high‐energy state. We herewith describe such a dynamic covalent chemical (DCC) system involving the reversible imine formation reaction. It is based on the formation of strained macrocyclic bis‐imine metal complexes in which the macrocyclic ligand is in a high energy form enforced by the coordination of the metal cation. Subsequent demetallation generates a highly strained free macrocycle that releases its accumulated strain energy by hydrolysis and reassembly into a resting state. Specifically, the metal‐templated condensation of a dialdehyde with a linear diamine leads to a bis‐imine [1+1]‐macrocyclic complex in which the macrocyclic ligand is in a coordination‐enforced strained conformation. Removal of the metal cation by a competing ligand yields a highly reactive [1+1]‐macrocycle, which then undergoes hydrolysis to transient non‐cyclic aminoaldehyde species, which then recondense to a strain‐free [2+2]‐macrocyclic resting state. The process can be monitored by 1H NMR spectroscopy. Energy differences between different conformational states have been evaluated by Hartree–Fock (HF) computations. One may note that the stabilisation of high‐energy molecular forms by metal ion coordination followed by removal of the latter, offers a general procedure for producing out‐of‐equilibrium molecular states, the fate of which may then be examined, in particular when coupled to dynamic covalent chemical processes.  相似文献   

18.
石墨炔特殊的电子结构和孔洞结构使其在信息技术、电子、能源、催化以及光电等领域具有潜在、重要的应用前景。近几年石墨炔的基础和应用研究已取得了重要成果,并迅速成为了碳材料研究中的新领域。石墨炔中炔键单元的高活性为其化学修饰与掺杂提供了良好的平台。在这篇综述中,我们将重点介绍石墨炔的非金属杂原子掺杂、金属原子修饰以及表面改性,并深入探讨掺杂与衍生化对石墨炔材料的电子性质的影响及其对光电化学催化性能的协同增强。  相似文献   

19.
铜族金属与完整及氮掺杂石墨烯的相互作用   总被引:1,自引:0,他引:1  
基于广义梯度密度泛函理论和周期平板模型,研究了铜族金属单原子和双原子簇与完整及氮掺杂石墨烯的结合情况.结果表明,氮掺杂后石墨烯的电子结构特性由半金属性变为金属性;铜族金属在完整及石墨型氮掺杂石墨烯上的吸附较弱,结合能约为0.5eV,而在吡啶型氮掺杂和吡咯型氮掺杂石墨烯上有较强的化学吸附,结合能一般大于1eV;吡咯型氮掺杂后的构型不稳定,金属原子及簇与包含该结构的石墨烯衬底作用时会使其向吡啶型氮掺杂转变,并最终得到基于吡啶型氮掺杂的稳定吸附构型.Mulliken电荷布居分析显示,吸附在吡啶型氮掺杂石墨烯上的金属单原子与金属双原子簇带电性质相反.态密度及轨道分析表明,Cu与吡啶型氮掺杂石墨烯空位处留有悬挂键的三个原子成键,而Au与其中两个C原子成键.  相似文献   

20.
Polymers are widely used advanced materials composed of macromolecular chains, which can be found in materials used in our daily life. Polymer materials have been employed in many energy and electronic applications such as energy harvesting devices, energy storage devices, light emitting and sensing devices, and flexible energy and electronic devices. The microscopic morphologies and electrical properties of the polymer materials can be tuned by molecular engineering, which could improve the device performances in terms of both the energy conversion efficiency and stability. Traditional polymers are usually considered to be thermal insulators owing to their amorphous molecular chains. Graphene-based polymeric materials have garnered significant attention due to the excellent thermal conductivity of graphene. Advanced polymeric composites with high thermal conductivity exhibit great potential in many applications. Therefore, research on the thermal transport behaviors in graphene-based nanocomposites becomes critical. Vacancy defects in graphene are commonly observed during its fabrication. In this work, the effects of vacancy defects in graphene on thermal transport properties of the graphene-polyethylene nanocomposite are comprehensively investigated using molecular dynamics (MD) simulation. Based on the non-equilibrium molecular dynamics (NEMD) method, the interfacial thermal conductance and the overall thermal conductance of the nanocomposite are taken into consideration simultaneously. It is found that vacancy defects in graphene facilitate the interfacial thermal conductance between graphene and polyethylene. By removing various proportions of carbon atoms in pristine graphene, the density of vacancy defects varies from 0% to 20% and the interfacial thermal conductance increases from 75.6 MW·m−2·K−1 to 85.9 MW·m−2·K−1. The distinct enhancement in the interfacial thermal transport is attributed to the enhanced thermal coupling between graphene and polyethylene. A higher number of broken sp2 bonds in the defective graphene lead to a decrease in the structure rigidity with more low-frequency (< 15 THz) phonons. The improved overlap of vibrational density states between graphene and polyethylene at a low frequency results in better interfacial thermal conductance. Moreover, the increase in the interfacial thermal conductance induced by vacancy defects have a significant effect on the overall thermal conductance (from 40.8 MW·m−2·K−1 to 45.6 MW·m−2·K−1). In addition, when filled with the graphene layer, the local density of polyethylene increases on both sides of the graphene. The concentrated layers provide more aligned molecular arrangement, which result in better thermal conductance in polyethylene. Further, the higher local density of the polymer near the interface provides more atoms for interaction with the graphene, which leads to stronger effective interactions. The relative concentration is insensitive to the density of vacancy defects. The reported results on the thermal transport behavior of graphene-polyethylene composites provide reasonable guidance for using graphene as fillers to tune the thermal conduction of polymeric composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号