首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, environmentally benign and energy efficient process for fabricating single faced superhydrophilic/hydrophobic cotton fabrics by controlling surface texture and chemistry at the nano/microscale is reported here. Stable ultra-hydrophobic surfaces with advancing and receding water droplet contact angles in excess of 146° as well as extreme superhydrophilic surfaces are obtained. Hydrophobic water-repellent cotton fabrics were obtained following plasma treatment through diamond-like carbon (DLC) coating by plasma enhanced chemical vapour deposition. The influence of changing different precursor’s plasma pre-treatments such as H2, Ar or O2 on the properties of DLC coatings is also evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and analysed in terms of contact angle measurements. Because of the DLC coating, the coated fabric showed to endure its superhydrophobic character even after 12 months.  相似文献   

2.
Evaluation of the hydrophobic/hydrophilic interaction individually between the sorbent and target compounds in sample pretreatment is a big challenge. Herein, a smart titanium substrate with switchable surface wettability was fabricated and selected as the sorbent for the solution. The titanium wires and meshes were fabricated by simple hydrothermal etching and chemical modification so as to construct the superhydrophilic and superhydrophobic surfaces. The micro/nano hierarchical structures of the formed TiO2 nanoparticles in situ on the surface of Ti substrates exhibited the switchable surface wettability. After UV irradiation for about 15.5 h, the superhydrophobic substrates became superhydrophilic. The morphologies and element composition of the wires were observed by SEM, EDS, and XRD, and their surface wettabilities were measured using the Ti mesh by contact angle goniometer. The pristine hydrophilic wire, the resulting superhydrophilic wire, superhydrophobic wire, and the UV-irradiated superhydrophilic wire were filled into a stainless tube as the sorbent instead of the sample loop of a six-port valve for on-line in-tube solid-phase microextraction. When employed in conjunction with HPLC, four kinds of wires were comparatively applied to extract six estrogens in water samples. The optimal conditions for the preconcentration and separation of target compounds were obtained with a sample volume of 60 mL, an injection rate of 2 mL/min, a desorption time of 2 min, and a mobile phase of acetonile/water (47/53, v/v). The results showed that both the superhydrophilic wire and UV-irradiated wire had the highest extraction efficiency for the polar compounds of estrogens with the enrichment factors in the range of 20–177, while the superhydrophobic wire exhibited the highest extraction efficiency for the non-polar compounds of five polycyclic aromatic hydrocarbons (PAHs). They demonstrated that extraction efficiency was mainly dependent on the surface wettability of the sorbent and the polarity of the target compounds, which was in accordance with the molecular theory of like dissolves like.  相似文献   

3.
Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.  相似文献   

4.
Poly(ethylene terephthalate) (PET) film surfaces were modified by argon (Ar), oxygen (O2), hydrogen (H2), nitrogen (N2), and ammonia (NH3) plasmas, and the plasma‐modified PET surfaces were investigated with scanning probe microscopy, contact‐angle measurements, and X‐ray photoelectron spectroscopy to characterize the surfaces. The exposure of the PET film surfaces to the plasmas led to the etching process on the surfaces and to changes in the topography of the surfaces. The etching rate and surface roughness were closely related to what kind of plasma was used and how high the radio frequency (RF) power was that was input into the plasmas. The etching rate was in the order of O2 plasma > H2 plasma > N2 plasma > Ar plasma > NH3 plasma, and the surface roughness was in the order of NH3 plasma > N2 plasma > H2 plasma > Ar plasma > O2 plasma. Heavy etching reactions did not always lead to large increases in the surface roughness. The plasmas also led to changes in the surface properties of the PET surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surfaces decreased. Modification reactions occurring on the PET surfaces depended on what plasma had been used for the modification. The O2, Ar, H2, and N2 plasmas modified mainly CH2 or phenyl rings rather than ester groups in the PET polymer chains to form C? O groups. On the other hand, the NH3 plasma modified ester groups to form C? O groups. Aging effects of the plasma‐modified PET film surfaces continued as long as 15 days after the modification was finished. The aging effects were related to the movement of C?O groups in ester residues toward the topmost layer and to the movement of C? O groups away from the topmost layer. Such movement of the C?O groups could occur within at least 3 nm from the surface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3727–3740, 2004  相似文献   

5.
Surfaces play an important role in defining the properties of materials, controlling wetting, adsorption, or desorption of biomolecules, and sealing/bonding of different materials. We have combined microscale features with plasma-etched nanoscale roughness and chemical modification to tailor the wettability of the substrates. Cyclic olefin polymers and copolymers (COPs/COCs) were processed to make a range of surfaces with controlled superhydrophobic or -hydrophilic properties. The hydrophobic properties of the polymers were increased by the introduction of microstructures of varying geometry and spacing through hot embossing. The COC/COP substrates were functionalized by plasma activation in O(2), CF(4), and a mixture of both gases. The plasma etching introduces nanoscale roughness and also chemically modifies the surface, creating either highly hydrophilic or highly hydrophobic (contact angle >150°) surfaces depending on the gas mixture. The influence of geometry and chemistries was characterized by atomic force microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Measurements of the contact angle and contact angle hysteresis demonstrated long-term stability of the superhydrophobic/superhydrophilic characteristics (>6 months).  相似文献   

6.
Surface wetting is an important and relevant phenomenon in several different fields. Scientists have introduced a large number of applications where special surface wetting could be exploited. Here, we study wetting phenomena on high- and low-adhesive superhydrophobic liquid flame spray (LFS)-generated TiO2 coatings on paper and pigment-coated board substrates using water–ethanol solution as a probe liquid. Submicrometer-scale air gaps, which exist on superhydrophobic surfaces below the liquid droplets, were more stable with the ethanol increment than the larger-scale micrometric air gaps. With the droplet ethanol concentration of 15 wt%, static contact angle as high as 155?±?2° was measured on the LFS–TiO2-coated board. Transition from the low-adhesive wetting state to the high-adhesive state was demonstrated on the LFS–TiO2-coated paper. The LFS method enables efficient roll-to-roll production of surfaces with special wetting properties on economically viable board and paper substrate materials.  相似文献   

7.
Surface wetting/anti-wetting and liquid absorption are relevant properties of many porous solids including paper and other cellulose-based materials. Here we demonstrate how surface wetting by water and water absorption of commercially available kraft paper can be altered by thin nanoparticle coatings fabricated by liquid flame spray in facile and continuous one-step process. Surface wettability and absorption properties of paper increased with silica and decreased with titania (TiO2) nanoparticle coatings. Moreover, the water-repellent (superhydrophobic) TiO2 nanoparticle coated paper could be switched to superhydrophilic and water absorbing by ultraviolet illumination. The experiments revealed that although surface wetting and liquid absorption of nanoparticle coated paper are strongly related to each other, they are two distinct phenomena which do not necessarily correlate. We propose wetting regimes on the nanoparticle coated paper samples on the basis of the experimental observations.  相似文献   

8.
The wetting behavior of fluorocarbon materials has been studied with the aim of assessing the influence of the surface chemical composition and surface roughness on the water advancing and receding contact angles. Diamond like carbon and two fluorocarbon materials with different fluorine content have been prepared by plasma enhanced chemical vapor deposition and characterized by X-ray photoemission, Raman and FT-IR spectroscopies. Very rough surfaces have been obtained by deposition of thin films of these materials on polymer substrates previously subjected to plasma etching to increase their roughness. A direct correlation has been found between roughness and water contact angles while a superhydrophobic behavior (i.e., water contact angles higher than 150° and relatively low adhesion energy) was found for the films with the highest fluorine content deposited on very rough substrates. A critical evaluation of the methods currently used to assess the roughness of these surfaces by atomic force microscopy (AFM) has evidenced that calculated RMS roughness values and actual surface areas are quite dependent on both the scale of observation and image resolution. A critical discussion is carried out about the application of the Wenzel model to account for the wetting behavior of this type of surfaces.  相似文献   

9.
Vertically aligned carbon nanotubes (VACNT) promise a great role for the study of tissue regeneration. In this paper, we introduce a new biomimetic mineralization routine employing superhydrophilic VACNT films as highly stable template materials. The biomineralization was obtained after VACNT soaking in simulated body fluid solution. Detailed structural analysis reveals that the polycrystalline biological apatites formed due to the -COOH terminations attached to VACNT tips after oxygen plasma etching. Our approach not only provides a novel route for nanostructured materials, but also suggests that COOH termination sites can play a significant role in biomimetic mineralization. These new nanocomposites are very promising as nanobiomaterials due to the excellent human osteoblast adhesion.  相似文献   

10.
In this study, the authors researched the preparations of superhydrophilic/superhydrophobic surfaces on commercial cup stock polyethylene coated papers by using sparked aluminum nanoparticles deposited on substrates through a sparking process. In this stage, the surface was porous and showed superhydrophilic properties. The samples were then annealed in air at various temperatures and some transformed to superhydrophobicity. It is well known that a suitable roughness in combination with low surface energy has been required to obtain superhydrophobic surfaces. Therefore, it is believed that during annealing process, when polyethylene is diffused from the substrate through the nanoparticle films and the superhydrophobic characteristics were created. The scanning electron microscope images showed that the film surfaces had a fluffy structure for both the as‐deposited and the annealed samples. However, the atomic force microscopy phase images showed completely different surface properties. Moreover, the X‐ray photoelectron spectroscopy spectra showed different surface chemical compositions. The experimental results revealed that the working temperature to produce superhydrophobic surfaces depended on the sparked film thickness. Furthermore, in order to prove the assumption explained above, glass and poly (methyl methacrylate) were also used as substrates.  相似文献   

11.
As-grown and heat-treated vapour grown carbon fibres (VGCF) in the as-prepared state, washed in HCl/H(2)O, and treated in O(2) plasma for different periods have been investigated by means of XPS and scanning electron microscopy (SEM). The surface energy of the carbon fibres before and after plasma treatment was determined from the wetting contact angle. Washing introduced hydroxyl, carbonyl and carboxyl groups onto the fibre surfaces and oxygen plasma treatment increases the total atomic concentration of oxygen up to 17%. This is in good agreement with the value of the polar component of the surface energy. Plasma treatment also enhanced the fibre surface porosity (by etching).  相似文献   

12.
The influence of the pulsed CO2 laser irradiation on the surface structure of the LDPE film was investigated. Significant changes were observed on the surface of laser treated films as it was verified by the attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy and contact angle-measurement. Formation of polar functional groups onto the LDPE surfaces exhibited by the ATR-FTIR spectra was shown to be strongly dependent on the number of the CO2 laser pulses. The intensity of the polar groups increased with increasing the number of pulses up to two and then slightly decreased at three laser pulses. This was also confirmed with the contact angle measurements in which the sample subjected to two laser pulses showed the highest wettability i.e. the lowest water drop contact angle. The concentration of peroxide groups formed on the surface of the laser treated films was determined quantitatively by UV spectroscopic method using iodide procedure. The latter results showed a similar trend with the results obtained using FTIR spectroscopy.  相似文献   

13.
Surface roughness is promotive of increasing their hydrophilicity or hydrophobicity to the extreme according to the intrinsic wettability determined by the surface free energy characteristics of a base substrate. Top-down etched silicon nanowires are used to create superhydrophilic surfaces based on the hemiwicking phenomenon. Using fluorine carbon coatings, surfaces are converted from superhydrophilic to superhydrophobic to maintain the Cassie-Baxter state stability by reducing the surface free energy to a quarter compared with intrinsic silicon. We present the robust criteria by controlling the height of the nanoscale structures as a design parameter and design guidelines for superhydrophilic and superhydrophobic conditions. The morphology of the silicon nanowires is used to demonstrate their critical height exceeds several hundred nanometers for superhydrophilicity, and surpasses a micrometer for superhydrophobicity. Especially, SiNWs fabricated with a height of more than a micrometer provide an effective means of maintaining superhydrophilic (<10°) long-term stability.  相似文献   

14.
Polyethylene terephthalate (PET) films have been structured with isolated nanofibrils and fibril bundles using oxidative plasma treatments with increasing etching ratios. The transition from fibrils to bundles was smooth and it was associated with a significant reduction in the overall top area fraction and with the development of a second organisation level at a larger length scale. This increased complexity was reflected in the surface properties. The surfaces with two-level substructures showed superhydrophilic and superhydrophobic properties depending on the surface chemistry. These properties were preserved during prolonged storage and resisted moderate mechanical stress. By combining different contact angle and drop impact measurements, the optimum surface design and plasma processing parameters for maximizing stability of the superhydrophobic or superhydrophilic properties of the PET films were identified.  相似文献   

15.
Oxygen plasma is widely employed for modification of polymer surfaces. Plasma treatment process is a convenient procedure that is also environmentally friendly. This study reports the effects of oxygen plasma treatment on the surface properties of poly(p‐phenylene terephthalamide) (PPTA) fibers. The surface characteristics before and after oxygen plasma treatment were analyzed by XPS, atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA). It was found that oxygen plasma treatment introduced some new polar groups (O? C?O) on the fiber surface, increased the fiber surface roughness and changed the surface morphologies obviously by plasma etching and oxidative reactions. It is also shown that the fiber surface wettability was improved significantly by oxygen plasma treatment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The present paper describes an unconventional approach to fabricate the superhydrophilic–superhydrophobic micropatterns on the TiO2 nanotube structured film by photocatalytic lithography with a two-step process. At the first step, the superhydrophobic TiO2 nanotube film is fabricated through electrochemical and self-assembled techniques. And at the second step, the superhydrophobic film is selectively exposed to UV light through a photomask to locally photocatalyse the organic monolayer assembled on the TiO2 nanotube surface. The superhydrophilic–superhydrophobic micropatterns have thus been developed, as a novel template to fabricate a define micropatterned coating of nano octacalcium phosphate by electrochemical deposition. It is indicated that these combined processes reveal a very promising approach for constructing well-defined micropatterns of various functional materials.  相似文献   

17.
Shi  M. K.  Graff  G. L.  Gross  M. E.  Martin  P. M. 《Plasmas and Polymers》1999,4(4):247-258
Residual gas analysis (RGA) and optical emission spectroscopy have been evaluated as potential in situ techniques for the detection of plasma-induced polymer surface etching. The detection is based on the measurement of CO and CO2 species formed in the gas phase following oxidation of the etching fragments released from the polymer surface. Experiments were performed on poly(ethylene terephthalate) and UV-cured acrylic (tripropylene glycol diacrylate) films exposed to O2 RF (13.56 MHz) plasmas. A linear correlation is obtained between the formation of CO and the polymer etching rate over the entire experimental range, but discrepancies appear for the formation of CO2 at high treatment powers (etching rate > 1.0 g/min.cm2). This behavior is attributed to a deficit of oxidizing agents relative to the generation of etching fragments. The results suggest that both RGA and optical emission spectroscopy can be used to monitor in situ and in real-time the etching of polymer surfaces during plasma treatment.  相似文献   

18.
A novel strategy for a tunable sigmoidal wetting transition from superhydrophobicity to superhydrophilicity on a continuous nanostructured hybrid film via gradient UV-ozone (UVO) exposure is presented. Along a single wetting gradient surface (40 mm), we could visualize the superhydrophobic (thetaH2O > 165 degrees and low contact angle hysteresis) transition (165 degrees > thetaH2O > 10 degrees ) and superhydrophilic (thetaH2O < 10 degrees within 1 s) regions simply through the optical images of water droplets on the surface. The film is prepared through layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) with an initial deposition in a fractal manner. The extraordinary wetting transition on chemically modified nanoparticle layered surfaces with submicrometer- to micrometer-scale pores represents a competition between the chemical wettability and hierarchical roughness of surfaces as often occurs in nature (e.g., lotus leaves, insect wings, etc).  相似文献   

19.
The surface modifications produced by a RF plasma treatment on a thermoplastic styrene–butadiene–styrene rubber–SBS—with a considerable amount of processing oils in its formulation (TRO) have been studied and compared to the modifications produced on an oil-free SBS rubber (TRF). The modifications produced by the plasmas on the rubber surface depended on the nature of the gas used to generate the plasma. Thus, argon plasma favored the migration of processing oils to the TRO rubber surface, producing a weak oily layer that prevented interaction of rubber with a polyurethane adhesive. On the other hand, oxygen and carbon dioxide plasmas produced important ablation of the rubber surface which resulted in a partial (CO2 plasma) or total (O2 plasma) removal of processing oils from the rubber surface and the creation of polar moieties that increased adhesion of the rubber surface towards a polyurethane adhesive.  相似文献   

20.
A general method of modifying the entire cross section of porous poly(ether sulfone) membranes with a low‐temperature CO2‐plasma treatment is reported. Both surfaces of the membranes are highly hydrophilic, with a water drop on the surface disappearing in less than 1 s, even 6 months after plasma treatment. This high hydrophilicity of both membrane surfaces results from the incorporation of hydrophilic functionalities, as evidenced by Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The incorporation of these hydrophilic functionalities takes place primarily during plasma treatment, with some incorporation of atmospheric oxygen and nitrogen immediately upon exposure to air. Scanning electron microscopy shows that the membrane surface is covered by a thin, white layer that is likely the result of etching and redeposition of sputtered surface fragments. An increase in the water bubble point and glass‐transition temperature is also observed for CO2‐plasma‐treated membranes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2473–2488, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号