首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, quantum chemical calculations of geometric parameters, conformational, natural bond orbital (NBO) and nonlinear optical (NLO) properties, vibrational frequencies, 1H and 13C NMR chemical shifts of the title molecule [C9H7F5N2O3] in the ground state have been calculated with the help of Density Functional Theory (DFT-B3LYP/6-311++G(d,p)) and Hartree-Fock (HF/6-311++G(d,p)) methods. The optimized geometric parameters, vibrational frequencies, 1H and 13C NMR chemical shifts values are compared with experimental values of the investigated molecules. Comparison between experimental and theoretical results showed that B3LYP/6-311++G(d,p) method is able to provide more satisfactory results. In order to understand this phenomenon in the context of molecular orbital picture, we examined the molecular frontier orbital energies (HOMO, HOMO-1, LUMO, and LUMO + 1), the energy difference (ΔE) between E HOMO and E LUMO, electronegativity (χ), hardness (η), softness (S) calculated by HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The molecular surfaces, Mulliken, NBO, and Atomic polar tensor (APT) charges of the investigated molecule have also been calculated by using the same methods.  相似文献   

2.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

3.
The laser-excited Raman spectra of liquid CH3SiClnBr3?n (n = 0, 1, 2) were studied. Quantumchemical calculations of these substances with geometry optimization were performed to determine their harmonic force fields and vibrational frequencies. The calculations were made using the HF/6-31G* and HF/6-311++G** approximations and density functional theory at the B3LYP/6-31G* and B3LYP/6-311++G** levels. An interpretation of the spectra was suggested and the calculated force fields were discussed in comparison with the data on related compounds.  相似文献   

4.
The potential energy surface of methyl beta-D-arabinofuranoside (3) has been studied by ab initio molecular orbital (HF/6-31G) and density functional theory (B3LYP/6-31G) calculations via minimization of the 10 possible envelope conformers. The partial potential energy surface identified that the global minimum and lowest energy northern conformer was E(2). In the HF calculations, (2)E was the most stable southern conformer, while the density functional theory methods identified (4)E as the local minimum in this hemisphere. Additional calculations at higher levels of theory showed that the B3LYP-derived energies of many of the envelope conformers of 3 are dependent upon the basis set used. It has also been demonstrated that B3LYP/6-31+G//B3LYP/6-31G single point energies are essentially the same as those obtained from full geometry optimizations at the B3LYP/6-31+G level. The northern and southern minima of the B3LYP/6-31+G surface are, respectively, the E(2) and (2)E conformers. The B3LYP/6-31G geometries were used to study the relationship between ring conformation and various structural parameters including bond angles, dihedral angles, bond lengths, and interatomic distances.  相似文献   

5.
Ab initio molecular orbital and density functional theory were used to investigate energetic and structural properties of the various conformations of hexa-tertbutylbenzene (1), hexakis(trimethylsilyl)benzene (2), hexakis (trimethylgermyl)benzene (3), and hexakis(trimethylstannyl)benzene (4). HF/3-21G//HF/3-21G and B3LYP/3-21G//HF/3-21G results revealed that the Twist-Boat (TB) conformer of compound 1 is more stable than the 1-Chair (C), 1-Boat (B), and 1-Planar (P) conformers. B3LYP/3-21G//HF/3-21G results show that the 1- TB conformer is more stable than 1- C, 1- B, and 1- P conformers of about 1.13, 4.34, and 99.94 kcal mol?1 , respectively. Contrary to the stability order of compound 1 conformers, the C conformer of compounds 2–4 is more stable than TB, B, and P conformations, as calculated by B3LYP/3-21G//HF/3-21G and HF/3-21G//HF/3-21G levels of theory. The energy gap between the C and P conformers in compounds 1–4 is decreased in the following order: ΔE(4: C, P) < ΔE (3: C, P) < ΔE(2: C, P) < ΔE (1: C, P). This fact can be explained in terms of the increase of C aromatic -M (M═C, Si, Ge, and Sn) bond lengths and the decrease of steric (van der Waals) repulsions in the previously discussed compounds. For compounds 1–3, the calculations were also performed at the B3LYP/ 6-31G*//HF/3-21G level of theory. However, the comparison showed that the results at B3LYP/3-21G//HF/3-21G methods correlated well with those obtained at the B3LYP/6-31G*// HF/6-31G method. Further, NBO analysis revealed that in compounds 1–4, the resonance energy associated with the σM-C1 to σ*C2-C3 delocalization is 5.20, 9.68, 11.15, and 12.27 kcal mol?1, respectively. These resonance energy values could explain the easiness of the ring flipping processes of C, B, and TB conformers of compounds 4 to 1. Also, the NBO results showed that by an increase of the σM-C1 → σ *C2-C3 resonance energies in compounds 1–4, the σM-C1 bonding orbital occupancies decrease. This fact could fairly explain the increase of the Caryl-M bond length from compound 1 to 4. The NBO results are also in good agreement with the calculated energy barriers for the ring flipping of the chair conformations in compounds 1–4, as calculated by B3LYP and HF methods.  相似文献   

6.
《Solid State Sciences》2012,14(4):476-487
The Fourier transform infrared (FT-IR) and Fourier transform Raman (FTR) spectra of 4-amino-3(4-chlorophenyl) butanoic acid were recorded in the regions 4000–400 cm−1 and 4000–100 cm−1, respectively, in the solid phase. Molecular electronic energy, geometrical structure, harmonic vibrational spectra, infrared intensities and Raman scattering activities, highest occupied molecular orbital, lowest unoccupied molecular orbital energy, energy gaps and thermodynamical properties such as zero-point vibrational energies, rotational constants, entropies and dipole moment were computed at the Hartree–Fock/6-31G(d,p) and three parameter hybrid functional Lee–Yang–Parr/6-31G(d,p) levels of theory. The vibrational studies were interpreted in terms of potential energy distribution (PED). The results were compared with experimental values with the help of scaling procedures. Most of the modes have wave numbers in the expected range and are in good agreement with computed values. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, 〈α〉 and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ1 and π1 antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule.  相似文献   

7.
In this work, the experimental and theoretical study on molecular structure and vibrational spectra of 4-nitrotoluene are studied. The FTIR and FTRaman experimental spectra of the molecule have been recorded in the range of 4000–100 cm?1. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The experimental determinations of vibrational frequencies are compared with those obtained theoretically from ab initio HF and DFT quantum mechanical calculations using HF/6-31G (d, p), B3LYP/6-31++G* (d, p) and B3LYP/6-311++G* (d, p) methods. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The vibrations of NO2 and CH3 groups coupled with skeletal vibrations are also investigated.  相似文献   

8.
Gas-phase electron diffraction and HF/6-31G*, HF/6-31G**, and B3LYP/6-31G* ab initio calculations were used to find that in the gas phase at 242°C the calix[4]arene [-(C6H3OH)-CH2-]4 molecule possesses a C4 conformation. Geometric parameters of the molecule were determined, and the energies of C-H?O hydrogen bonds (7.3 kcal mol?1) were estimated by the AM1 method.  相似文献   

9.
电场作用下分子导线的理论研究   总被引:2,自引:0,他引:2  
摘要利用从头计算法分别在HF/6-31G, HF/6-31G*, HF/6-31G**, HF/6-31+G, HF/6-31++G, HF/6-31+G*, HF/6-31+G**, HF/D95+*, B3LYP/6-31G*和B3LYP/6-31+G*水平上计算了5个单体的聚乙炔分子导线, 从几何构型、 SCF能量和分子轨道能级三个方面讨论了外电场对分子导线的影响, 给出了聚乙炔分子导线性质与外电场变化的定量关系.  相似文献   

10.
The conformational analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule (abbreviated as 68DIP) was performed by using B3LYP/6-31G(d) level of theory to find the most stable form. Two staggered stable conformers were observed on the torsional potential energy surface. The equilibrium geometry, bonding features and vibrational frequencies of 68DIP have been investigated by using the DFT (B3LYP) and HF methods for the lowest energy conformer. The first order hyperpolarizability (β(total)) of this molecular system and related properties (β, μ, <α> and Δα) are calculated using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H?N intramolecular hydrogen-bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies E((2)) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and electronic properties, such as HOMO, LUMO energies, excitation energies and wavelength were performed by TD-DFT/B3LYP, CIS and TD-HF methods by using 6-311++G(d,p) basis set. Finally, the calculation results were applied to simulated infrared spectra of the title compound which show good agreement with observed spectra.  相似文献   

11.
Ab initio molecular orbital calculations at HF/6-31G, HF/6-31G (d,p) and DFT at B3LYP/6-31G (d,p) levels and molecular mechanics calculations of thermodynamic and kinetic parameters for Bruice’s systems 1-6 indicate that the remarkable acceleration in the cyclization of di-carboxylic semi-esters 1-6 is solely the result of a strain effect and not proximity orientation stemming from the ‘reactive rotamer effect’.  相似文献   

12.
In this work, the molecular geometry of heptachlor is investigated using ab initio HF, DFT, LDA, and GGA methods. The natural bond orbital (NBO) analysis is performed at the B3LYP/6-311++G(d,p) level of theory. The first order hyperpolarizability βtotal, the mean polarizability Δα, the anisotropy of the polarizability Δα, and the dipole moment μ, are calculated by B3LYP/6-311++G(d,p) and HF/6- 311++G(d,p) methods. The first order hyperpolarizability (βtotal) is calculated based on the finite field approach. UV spectral parameters along with HOMO, LUMO energies for heptachlor are determined in vacuum and the solvent phase using HF, DFT, and TD-DFT/B3LYP methods implemented with the 6-311++G(d,p) basis set. Atomic charges and electron density of heptachlor in vacuum and ethanol are calculated using DFT/B3LYP and TD-DFT/B3LYP methods and the 6-311++G(d,p) basis set. In addition, after the frontier molecular orbitals (FMOs), the molecular electrostatic potential (MEP), the electrostatic potential (ESP), the electron density (ED), and the solvent accessible surface of heptachlor are visualized as a results of the B3LYP/6-311++G(d,p) calculation. Densities of states (DOS), the external electric field (EF) effect on the HOMO-LUMO gap, and the dipole moment are investigated by LDA and GGA methods.  相似文献   

13.
苯并氧化呋咱稳定性和异构化的DFT和ab initio研究   总被引:1,自引:0,他引:1  
运用B3LYP/6-31G(d)密度泛函理论(DFT)方法对苯并氧化呋咱、邻二亚硝基苯及其间的异构化反应进行了计算研究。结果表明,苯并氧化呋咱的分子总能量比邻二亚硝基苯的低;由苯并氧化呋咱异构为邻二亚硝基苯的正向反应活化能(Ea+=51.0kJ/mol),与文献实测值(58.6kJ/mol)较接近,而其逆向反应活化能(Ea-=4.6kJ/mol)很小,从而揭示了苯并氧化呋咱比邻二亚硝基苯更稳定·此外,进行了HF/3-21G、HF/6-31G(d)和MP2/6-31G(d)//6-31G(d)水平下相应的计算,发现B3LYP-DFT的结果较abinitio为优。谐振动频率的B3LYP/6-31G(d)计算还支持了邻二亚硝基苯为苯并氧化呋咱“自-自”互变重排反应的中间体。  相似文献   

14.
The effects of solvation in the SN2 reaction Cl(H2O)+CH3Cl were investigated using our own N-layered integrated molecular orbital and molecular mechanics (ONIOM) polarizable continuum model (PCM) method [Vreven T, Mennucci B, da Silva CO, Morokuma K, Tomasi J (2001) J Chem Phys 115:62–72], which surrounds the microsolvated ONIOM system with a polarizable continuum. The microsolvating water molecule tends to stay in the vicinity of the original chloride ion. In the ONIOM calculations, Cl+CH3Cl was considered as the model system and was handled with the high-level method, while the explicit water molecule in the microsolvated complex was treated at the low-level. The molecular orbital (MO) and ONIOM(MO:MO) calculations allow us to assess the errors introduced by the ONIOM extrapolation, as well as the effects of microsolvation on the potential-energy surfaces. We find that ONIOM[B3LYP/6-31+G(d,p):HF/6-31+G(d,p)] and ONIOM[B3LYP/6-31+G(d,p):HF/6-31+G(d,p)]-PCM methods are good approximations to the target B3LYP/6-31+G(d,p) and B3LYP/6-31+G(d,p)-PCM methods. In addition, several approximate (computationally less expensive) schemes in the ONIOM-PCM method have been compared to the exact scheme, and all are shown to perform well.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

15.
Ab inintio molecular orbital and density functional theory method were used to investigate the structural and dynamic behavior of 1,8-di-tert-butyl naphthalene (1), 1,8-bis(trimethylsilyl)naphthalene (2), 1,8-bis(trimethylgermyl)naphthalene (3), and 1,8-bis(trimethylstannyl)naphthalene (4). HF/3-21G//HF/3-21G results revealed that the ring flipping barrier height of compound 1–4 is 92.59, 32.13, 26.76, and 15.46 kJ mol?1 respectively. The obtained results show that the transition state structure for ring flipping of the bulky-groups is in a planar form with naphthalene ring. Contrary to compound 1, the ring flipping of compounds 2–4 occurred easily at room temperature. Also, MP2/3-21G//HF/3-21G energy calculation, show that the enantiomerization energy of compounds 1–4 are 97.99, 33.24, 26.80, and 15.38 kJ·mol?1 respectively. The required energy for ring inversion of compounds 1–4 are 85.09, 27.26, 21.54, and 10.21 kJ mol?1 respectively, as calculated by B3LYP/3-21G//HF/3-21G method. It can be concluded that the lower energy barrier of the ring flipping of compounds 2–4 is related to the increasing of the bond lengths of Si—C, Ge—C, and Sn—C, in contrast to C—C bond.  相似文献   

16.
This work is devoted to theoretical study on molecular structure of protopine. The equilibrium geometry, harmonic vibrational frequencies and infrared intensities were calculated by ab initio Hartree-Fock and density functional B3LYP methods with the 6-31G(d) basis set and were interpreted in terms of potential energy distribution (PED) analysis. The internal coordinates were optimized repeatedly for many times to maximize the PED contributions. A detailed interpretation of the infrared spectra of protopine is reported. The calculations are in agreement with experiment. The thermodynamic functions of the title compound were also performed at HF/6-31G(d) and B3LYP/6-31G(d) level of theory. The FT-IR spectra of protopine were recorded in solid phase.  相似文献   

17.
The standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K for 4,5-dicyanoimidazole, in the crystalline phase, was derived from the standard molar energy of combustion measured by static bomb combustion calorimetry. This value and the literature value of the standard molar enthalpy of sublimation of the compound allow the calculation of the corresponding gas-phase standard molar enthalpy of formation, at T = 298.15 K. Additionally, theoretical calculations for 4,5-dicyanoimidazole were performed by density functional theory with the hybrid functional B3LYP and the 6-31G(d) basis set, extending the study to the 2,4- and 2,5-dicyanoimidazole isomers. Single-point energy calculations for both molecules were determined at the B3LYP/6-311+G(2df,2p) level of theory. With the objective of assessing the quality of the results, standard ab initio molecular orbital calculations at the G3 level were also performed. Enthalpies of formation, obtained using appropriate working reactions, were calculated and compared with the experimental data.  相似文献   

18.
Reference values of the structural substituent parameters, S E and S R, measuring the electronegativity and resonance effects, respectively, of functional groups (Campanelli et al. J Phys Chem A 107:6429–6440, 2003) have been determined from the benzene ring geometries of 100 Ph–X species, including different conformations of the same molecule. Geometries have been obtained by quantum chemical calculations at the HF/6-31G*, HF/6-311++G**, and B3LYP/6-311++G** levels of theory. The substituent parameters from HF/6-311++G** calculations are in close agreement with those determined at the HF/6-31G* level. Using the B3LYP density functional yields S E and S R values which—in general—correlate well with the corresponding HF values. Exceptions occur with some charged groups, and, in the case of S E, with a few dipolar groups having very high or low electronegativities. S R values from B3LYP calculations are about 22% smaller than the corresponding HF values. The variations of the benzene ring geometry caused by electronegativity, resonance, and steric effects are illustrated in some detail.  相似文献   

19.
The mechanism of H? H σ bond activation catalyzed by VO(1A1/3A′) has been investigated by using density functional theory at the B3LYP/6‐311G(2d, p) level and the single‐point energy calculations were done at the CCSD/6‐311G (2d, p)//B3LYP/6‐311G(2d, p) level of theory using the geometries along the minimum energy pathway. According to our calculation results, the different reaction mechanisms were found for the singlet and triplet potential energy surfaces (PESs). Specially, the crossing points (CPs) between the different PESs have been located by means of the intrinsic reaction coordinate approach used by Yoshizawa et al, and corresponding minimum energy CPs that we obtained by the mathematical algorithm proposed by Harvey et al. has also been employed. In addition, the orbital interaction for ion‐molecule complexes 1IM1 and 3IM1 have been examined by fragment molecular orbital analysis. Finally, the frontier molecular orbital interaction analysis about 3TS1 and 3TS2 were used to gain useful information about the H? H σ bond activation by VO. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

20.
Quantum chemical calculations of geometrical structure and vibrational wavenumbers of 8-hydroxyquinolinium picrate (8-HQP) were carried out by ab initio HF and density functional (DFT/B3LYP) method with 6-31++G(dp) basis set. The calculated geometric parameters of 8-HQP are presented. A detailed interpretation of the infrared spectra of 8-hydroxyquinolinium picrate (8-HQP) are also reported. Theoretical molecular frontier orbital energies of the title compound have been calculated using the method mentioned above in order to understand this phenomenon in the context of molecular orbital picture. The molecular HOMOs and LUMOs generated via HF and B3LYP method have been outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号