首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.  相似文献   

2.
Wang J  McCord B 《Electrophoresis》2011,32(13):1631-1638
A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples.  相似文献   

3.
A fluorescence energy transfer (ET) dye-labeled STR typing system (ET 16-plex) is developed for the markers used in the commercial STR typing kit PowerPlex 16, and its performance assessed using a 96-lane microfabricated capillary array electrophoresis (muCAE) system. The ET 16-plex amplicons displayed 1.6-9-fold higher fluorescence intensities compared to those produced using the single-dye (SD)-labeled multiplex kits. The ET multiplex delivered full STR profiles from 62.5 pg of DNA; half the input required for the SD kits while maintaining a similar heterozygote allele balance. This increased sensitivity should improve typing of poor-quality DNA samples by making minor or imbalanced alleles more readily detectable at the low copy number (LCN) threshold. The ET 16-plex also generated complete profiles with only 28 PCR cycles; this capability should improve LCN typing by reducing the amplification time and drop-in allele incidence. To confirm the practical advantages of ET-labeled primers, six previously problematic casework samples were tested and only the ET 16-plex kit was able to capture additional allele data. The successful development and demonstration of ET primers for higher sensitivity STR typing offers a simple solution to improving current commercial multiplex typing capability. The superior spectral properties and universal compatibility with any primer sequence provided by ET cassettes will make future multiplex construction more facile and straightforward. The pairing of ET cassette technology with the muCAE system illustrates not only an enhanced STR typing platform, but a significant step toward a higher-efficiency forensic laboratory enabled by better chemistry and microfluidics.  相似文献   

4.
For over 10 years, quantitative PCR (qPCR) for DNA quantitation has been reported in forensics. However, assays have not been described for small qPCR platforms. Thus, technological advancement is not always implemented in small forensic genetics laboratories. A duplex qPCR assay is reported, using a StepOne instrument and targeting a short and a long human DNA region. This study was performed according to international validation guidelines, including sensitivity, repeatability, reproducibility, precision, accuracy, contamination assessment, known and case-type samples, and degradation studies. Characterization of the genetic markers, species specificity, and population studies had already been conducted. Moreover, case-type samples were quantified, amplified using commercial kits and the number of alleles detected was recorded. Sensitivity was shown to be 10 pg/µL. Standard curve replicates demonstrated the assay is accurate, precise, as well as fairly repeatable and reproducible. The NGM Detect kit was shown to yield higher peaks than Identifiler Plus and NGM Select for degraded samples. Moreover, quality sensors were always present and proved useful. The quantification values of the large target showed a correlation with the number of alleles detected in the STR profiles for known and casework samples. The degradation index was shown to be informative, with a value of 10 or higher indicating dropout. It is suggested that after quantitation, samples with low or degraded DNA be amplified using newer amplification kits containing quality sensors to confirm that the low-quality profile was not affected by inhibition.  相似文献   

5.
The amplification of target DNA by the polymerase chain reaction (PCR) produces copies which may contain errors. Two sources of errors are associated with the PCR process: (1) editing errors that occur during DNA polymerase-catalyzed enzymatic copying and (2) errors due to DNA thermal damage. In this study a quantitative model of error frequencies is proposed and the role of reaction conditions is investigated. The errors which are ascribed to the polymerase depend on the efficiency of its editing function as well as the reaction conditions; specifically the temperature and the dNTP pool composition. Thermally induced errors stem mostly from three sources: A+G depurination, oxidative damage of guanine to 8-oxoG and cytosine deamination to uracil. The post-PCR modifications of sequences are primarily due to exposure of nucleic acids to elevated temperatures, especially if the DNA is in a single-stranded form. The proposed quantitative model predicts the accumulation of errors over the course of a PCR cycle. Thermal damage contributes significantly to the total errors; therefore consideration must be given to thermal management of the PCR process.  相似文献   

6.
Semi‐nested PCR with allele‐specific (AS) primers and sequencing of mitochondrial DNA (mtDNA) were performed to analyze and interpret DNA mixtures, especially when biological materials were degraded or contained a limited amount of DNA. SNP‐STR markers were available to identify the minor DNA component using AS‐PCR; moreover, SNPs in mtDNA could be used when the degraded or limited amounts of DNA mixtures were not successful with SNP‐STR markers. Five pairs of allele‐specific primers were designed based on three SNPs (G15043A, T16362C, and T16519C). The sequence of mtDNA control region of minor components was obtained using AS‐PCR and sequencing. Sequences of the amplification fragments were aligned and compared with the sequences of known suspects or databases. When this assay was used with the T16362C and T16519C SNPs, we found it to be highly sensitive for detecting small amounts of DNA (~30 pg) and analyzing DNA mixtures of two contributors, even at an approximately 1‰ ratio of minor and major components. An exception was tests based on the SNP G15043A, which required approximately 300 pg of a 1% DNA mixture. In simulated three contributor DNA mixtures (at rate of 1:1:1), control region fragments from each contributor were detected and interpreted. AS‐PCR combined with semi‐nested PCR was successfully used to identify the mtDNA control region of each contributor, providing biological evidence for excluding suspects in forensic cases, especially when biological materials were degraded or had a limited amount of DNA.  相似文献   

7.
Whole-genome DNA amplification (WGA) is a promising method that generates large amounts of DNA from samples of limited quantity. We investigated the accuracy of a multiplex PCR approach to WGA over STR loci. The amplification bias within a locus and over all analyzed loci was investigated in relation to the amount of template in the WGA reaction, the specific STR locus, and allele length. We observed reproducible error-free STR profiles with 10 ng down to 1 ng of DNA template. The amplification deviation at a locus and between loci was within the intra-method reproducibility. WGA is the method of choice for amplifying nanogram amounts of genomic DNA for different applications. We detected unbalanced STR amplifications at one locus and between loci, allelic drop-outs, and additional alleles after WGA of low-copy-number DNA. We found that the high number of drop-outs and drop-ins could be eradicated using pooled DNA from separate WGA reactions even with as little as 100 pg of starting template. Nevertheless, the quality of the results was still not sufficient for use in routine chimerism analysis of limited specific cell populations after allogeneic stem cell transplantation.  相似文献   

8.
Gradient elution isotachophoresis (GEITP) was demonstrated for DNA purification, concentration, and quantification from crude samples, represented here by soiled buccal swabs, with minimal sample preparation prior to human identification using STR analysis. During GEITP, an electric field applied across leading and trailing electrolyte solutions resulted in isotachophoretic focusing of DNA at the interface between these solutions, while a pressure‐driven counterflow controlled the movement of the interface from the sample reservoir into a microfluidic capillary. This counterflow also prevented particulates from fouling or clogging the capillary and reduced or eliminated contamination of the delivered DNA by PCR inhibitors. On‐line DNA quantification using laser‐induced fluorescence compared favorably with quantitative PCR measurements and potentially eliminates the need for quantitative PCR prior to STR analysis. GEITP promises to address the need for a rapid and robust method to deliver DNA from crude samples to aid the forensic community in human identification.  相似文献   

9.
《Electrophoresis》2017,38(13-14):1713-1723
In this work, we present a novel probabilistic peak detection algorithm based on a Bayesian framework for forensic DNA analysis. The proposed method aims at an exhaustive use of raw electropherogram data from a laser‐induced fluorescence multi‐CE system. As the raw data are informative up to a single data point, the conventional threshold‐based approaches discard relevant forensic information early in the data analysis pipeline. Our proposed method assigns a posterior probability reflecting the data point's relevance with respect to peak detection criteria. Peaks of low intensity generated from a truly existing allele can thus constitute evidential value instead of fully discarding them and contemplating a potential allele drop‐out. This way of working utilizes the information available within each individual data point and thus avoids making early (binary) decisions on the data analysis that can lead to error propagation. The proposed method was tested and compared to the application of a set threshold as is current practice in forensic STR DNA profiling. The new method was found to yield a significant improvement in the number of alleles identified, regardless of the peak heights and deviation from Gaussian shape.  相似文献   

10.
A fully integrated microdevice and process for forensic short tandem repeat (STR) analysis has been developed that includes sequence-specific DNA template purification, polymerase chain reaction (PCR), post-PCR cleanup and inline injection, and capillary electrophoresis (CE). Fragmented genomic DNA is hybridized with biotin-labeled capture oligos and pumped through a fluidized bed of magnetically immobilized streptavidin-coated beads in microchannels where the target DNA is bound to the beads. The bead-DNA conjugates are then transferred into a 250 nL PCR reactor for autosomal STR amplification using one biotin and one fluorescence-labeled primer. The resulting biotin-labeled PCR products are electrophoretically injected through a streptavidin-modified capture gel where they are captured to form a concentrated and purified injection plug. The thermally released sample plug is injected into a 14 cm long CE column for fragment separation and detection. The DNA template capture efficiency provided by the on-chip sequence-specific template purification is determined to be 5.4% using K562 standard DNA. This system can produce full 9-plex STR profiles from 2.5 ng input standard DNA and obtain STR profiles from oral swabs in about 3 hours. This fully integrated microsystem with sample-in-answer-out capability is a significant advance in the development of rapid, sensitive, and reliable micro-total analysis systems for on-site human identification.  相似文献   

11.
Polymerase chain reaction (PCR) is an essential part of research based on genomics or cell analysis. The development of a microfluidic device that would be suitable for high-temperature-based reactions therefore becomes an important contribution towards the integration of micro-total analysis systems (μTAS). However, problems associated with the generation of air bubbles in the microchannels before the introduction of the assay liquid, which we call the “initial start-up” in this study, made the flow irregular and unstable. In this report, we have tried to address these problems by adapting a novel liquid-flow method for high-temperature-based reactions. A PDMS-based microfluidic device was fabricated by soft-lithography techniques and placed on a cartridge heater. The generation of the air bubbles was prevented by introducing the fluorinated oil, an inert and highly viscous liquid, as the cap just before the introduction of the sample solutions into the microchannels. The technique was applied for continuous-flow PCR, which could perform PCR on-chip in a microfluidic system. For the evaluation of practical accuracy, plasmid DNA that serves as a reference molecule for the quantification of genetically modified (GM) maize was used as the template DNA for continuous-flow PCR. After PCR, the products were collected in a vial and analyzed by gel electrophoresis to confirm the accuracy of the results. Additionally, quantitative continuous-flow PCR was performed using TaqMan technology on our PCR device. A laser detection system was also used for the quantitative PCR method. We observed a linear relationship between the threshold cycle (Ct) and the initial DNA concentration. These results showed that it would be possible to quantify the initial copies of the template DNA on our microfluidic device. Accurate quantitative DNA analysis in microfluidic systems is required for the integration of PCR with μTAS, thus we anticipate that our device would have promising potential for applications in a wide range of research.  相似文献   

12.
《Electrophoresis》2017,38(7):1016-1021
A Y‐STR multiplex system has been developed with the purpose of complementing the widely used 17 Y‐STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y‐STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y‐STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y‐STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y‐STRs will be an efficient and low‐cost alternative to complete the set of 23 Y‐STRs and improve allele databases for population and forensic purposes.  相似文献   

13.
A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR performed with a dilution series of C. jejuni DNA template (2 to 200 pg/microL) could be quantitatively detected and compared with a conventional post-PCR analysis (DNA gel electrophoresis). The presented approach provided reliable real-time quantitative information of the PCR amplification of the targeted gene. With the integrated optical system, the reaction dynamics at any location inside the micro reaction chamber can easily be monitored.  相似文献   

14.
Major histocompatibility complex (MHC) genotyping still remains one of the most challenging issues for evolutionary ecologists. To date, none of the proposed methods have proven to be perfect, and all provide both important pros and cons. Although denaturing capillary electrophoresis has become a popular alternative, allele identification commonly relies upon conformational polymorphisms of two single‐stranded DNA molecules at the most. Using the MHC class II (β chain, exon 2) of the black kite (Aves: Accipitridae) as our model system, we show that the simultaneous analysis of overlapping PCR amplicons from the same target region substantially enhances allele discrimination. To cover this aim, we designed a multiplex PCR capable to generate four differentially sized and labeled amplicons from the same allele. Informative peaks to assist allele calling then fourfold those generated by the analysis of single PCR amplicons. Our approach proved successful to differentiate all the alleles (N=13) isolated from eight unrelated birds at a single optimal run temperature and electrophoretic conditions. In particular, we emphasize that this approach may constitute a straightforward and cost‐effective alternative for the genotyping of single or duplicated MHC genes displaying low to moderate sets of divergent alleles.  相似文献   

15.
The recent introduction of polymerase chain reaction (PCR)-massively parallel sequencing (MPS) technologies in forensics has changed the approach to allelic short tandem repeat (STR) typing because sequencing cloned PCR fragments enables alleles with identical molecular weights to be distinguished based on their nucleotide sequences. Therefore, because PCR fidelity mainly depends on template integrity, new technical issues could arise in the interpretation of the results obtained from the degraded samples. In this work, a set of DNA samples degraded in vitro was used to investigate whether PCR-MPS could generate “isometric drop-ins” (IDIs; i.e., molecular products having the same length as the original allele but with a different nucleotide sequence within the repeated units). The Precision ID GlobalFiler NGS STR panel kit was used to analyze 0.5 and 1 ng of mock samples in duplicate tests (for a total of 16 PCR-MPS analyses). As expected, several well-known PCR artifacts (such as allelic dropout, stutters above the threshold) were scored; 95 IDIs with an average occurrence of 5.9 IDIs per test (min: 1, max: 11) were scored as well. In total, IDIs represented one of the most frequent artifacts. The coverage of these IDIs reached up to 981 reads (median: 239 reads), and the ratios with the coverage of the original allele ranged from 0.069 to 7.285 (median: 0.221). In addition, approximately 5.2% of the IDIs showed coverage higher than that of the original allele. Molecular analysis of these artifacts showed that they were generated in 96.8% of cases through a single nucleotide change event, with the C > T transition being the most frequent (85.7%). Thus, in a forensic evaluation of evidence, IDIs may represent an actual issue, particularly when DNA mixtures need to be interpreted because they could mislead the operator regarding the number of contributors. Overall, the molecular features of the IDIs described in this work, as well as the performance of duplicate tests, may be useful tools for managing this new class of artifacts otherwise not detected by capillary electrophoresis technology.  相似文献   

16.
Short tandem repeat (STR) loci, widely used as genetic markers in disease diagnostic studies and human identity applications, are traditionally genotyped through comparison of allele sizes to a sequenced allelic ladder. Allelic ladders permit a floating bin allele calling method to be utilized, which enables reliable allele calling across laboratories, instrument platforms, and electrophoretic conditions. Precise sizing methods for STR allele calling involving fixed bins can also be used when a high degree of precision has been demonstrated within an instrument platform and a set of electrophoretic conditions. An alternative method for reliable genotyping of STR markers, locus-specific brackets (LSBs), is introduced here. LSBs are artificial alleles created through molecular biology manipulations to be shorter or longer than alleles commonly seen in populations under investigation. The size and repeat number of measured alleles are interpolated between the two LSB products that are mixed with the polymerase chain reaction-amplified STR alleles. The advantages and limitations of the LSB approach are described along with a concordance study between the LSB typing approach and other STR typing methods. Complete agreement was observed with 162 samples studied at 5 Y-chromosome loci.  相似文献   

17.
Massively parallel sequencing (MPS) technologies have the ability to reveal sequence variations within STR alleles as well as their nominal allele lengths, which have traditionally been detected by CE instruments. Recently, Thermo Fisher Scientific has updated the MPS-STR panel, named the Precision ID GlobalFiler next-generation sequencing (NGS) STR Panel version 2, with primers redesigned to add two pentanucleotide tandem repeat loci and profile interpretation supported by the Converge software. Using the Ion Chef System, the Ion S5XL System, and the Converge software, genetic variations were characterized within STR repeat and flanking regions of 30 autosomal STR markers in 115 unrelated individuals from two Chinese population groups (58 Tibetans and 57 Hans). Nineteen STRs demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. In total, 390 alleles were identified by their sequences compared with 258 alleles that were identified by length. Of these 92 sequence variants found within the STR repeat regions, 40 variants were located in STR flanking regions. Additionally, the agreement of the results with CE data was evaluated, as was the ability of this new MPS panel to analyze case-type (11 samples) and artificially degraded samples (seven samples in triplicate). The results generated from this study illustrate that extensive sequence variation exists in commonly used STR markers in the selected population samples and indicate that this NGS STR panel has the potential to be used as an effective tool for human forensics.  相似文献   

18.
Short tandem repeats (STRs), known as microsatellites, are one of the most informative genetic markers for characterizing biological materials. Because of the relatively small size of STR alleles (generally 100-350 nucleotides), amplification by polymerase chain reaction (PCR) is relatively easy, affording a high sensitivity of detection. In addition, STR loci can be amplified simultaneously in a multiplex PCR. Thus, substantial information can be obtained in a single analysis with the benefits of using less template DNA, reducing labor, and reducing the contamination. We investigated 14 STR loci in a Japanese population living in Sendai by three multiplex PCR kits, GenePrint PowerPlex 1.1 and 2.2. Fluorescent STR System (Promega, Madison, WI, USA) and AmpF/STR Profiler (Perkin-Elmer, Norwalk, CT, USA). Genomic DNA was extracted using sodium dodecyl sulfate (SDS) proteinase K or Chelex 100 treatment followed by the phenol/chloroform extraction. PCR was performed according to the manufacturer's protocols. Electrophoresis was carried out on an ABI 377 sequencer and the alleles were determined by GeneScan 2.0.2 software (Perkin-Elmer). In 14 STRs loci, statistical parameters indicated a relatively high rate, and no significant deviation from Hardy-Weinberg equilibrium was detected. We apply this STR system to paternity testing and forensic casework, e.g., personal identification in rape cases. This system is an effective tool in the forensic sciences to obtain information on individual identification.  相似文献   

19.
Liu QL  Lu DJ  Quan L  Chen YF  Shen M  Zhao H 《Electrophoresis》2012,33(8):1299-1305
The aim of this study is to develop a new multiplex PCR system that simultaneously amplifies the 15 X-chromosome short tandem repeats (X-STRs) loci in the same PCR reaction, and to obtain the 15 X-STR loci database in three nationality populations from China. This multiplex system includes DXS7133, DXS6801, DXS981, DXS6809, DXS7424, DXS6789, DXS9898, DXS7132, GATA165B12, DXS101, DXS10075, DXS6800, GATA31E08, DXS10074, and DXS10079, which were successfully analyzed on 1251 DNA samples (670 males and 581 females) from Guangdong Han population, Xinjiang Uigur and Kazakh. The allele frequencies and mutation rates of the 15 loci were investigated, and the allele frequency distribution among different populations was compared. A total of 6-17 alleles for each locus were observed and altogether 170 alleles for all the selected loci were found. Thirteen cases with mutation of the above loci were detected in 11,850 meioses. Pairwise comparisons of the allele frequencies distribution showed significant differences in most loci among different populations. The results indicate that this multiplex system may provide high polymorphism information for kinship testing and relationship investigations, and it is necessary to gain allele frequency and mutation rate of different population for forensic application.  相似文献   

20.
There are situations in which it would be very valuable to have a DNA profile within a short time; for example, in mass disasters or airport security. In previous work, we have promoted reduced size STR amplicons for the analysis of degraded DNA. We also noticed that shorter amplicons are more robust during amplification, making them inhibition resistant, and potentially applicable to high-speed direct PCR. Here, we describe a set of miniSTRs capable of rapid direct PCR amplification. The selected markers are a subset of the Combined DNA Index System (CODIS) loci modified to permit high-speed amplification. Using the proposed protocol, the amplification of eight loci plus amelogenin directly from a saliva sample can be completed in 7 min and 38 s using a two-step PCR with 30 cycles of 98°C for 2 s and 62°C for 7 s on a Streck Philisa thermocycler. Selection of DNA polymerase, optimization of the two-step PCR cycling conditions, the primer concentrations, and the dilution of saliva is described. This method shows great potential as a quick screening method to obtain a presumptive DNA profile when time is limited, particularly when combined with high-speed separation and detection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号