首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure and energetics of complexes obtained upon interaction between cysteine and Zn2+, Cd2+, Hg2+ and Cu2+ cations were studied using quantum chemical density functional theory calculations with the 6-311++G** orbital basis set and relativistic pseudopotentials for the cations. Different coordination sites for metal ions on several cysteine conformers were considered. In their lowest energy complexes with the amino acid, the Zn2+ and Cd2+ cations appear to be three-coordinated to carbonyl oxygen, nitrogen and sulfur atoms, whereas the Cu2+ and Hg2+ ions are coordinated to both the carbonyl oxygen and sulfur atoms of one of the zwitterion forms of the amino acid. Bonds of metal cations with the coordination sites are mainly ionic except those established with sulfur, which show a small covalent character that become most significant when Cu2+ and Hg2+ are involved. The order of metal ion affinity proposed is Cu>Zn>Hg>Cd.  相似文献   

2.
3.
A new fluorescent chemosensor based on a helical imide as fluorophore and a cyclen moiety as ionophore was synthesized, which not only showed enhanced fluorescent responses in the presence of Zn(2+), Cd(2+), and Hg(2+) but also could simultaneously and selectively distinguish the three cations in a simulated physiological condition with the help of cysteine as an auxiliary reagent.  相似文献   

4.
Potential energy curves of the electronic ground states of the group 12 dimers Zn2 and Cd2 were computed at the CCSD(T) level of theory, including full triple corrections $\Updelta$ T in the coupled-cluster procedure, and spin-orbit (SO) contributions from four-component coupled-cluster calculations, extrapolated to the complete basis set (CBS) limit. For Hg2, the potential energy curve published recently (Pahl et al. in J Chem Phys 132:114301, 2010] is complemented in this work by non-relativistic calculations to quantify and discuss relativistic effects. We obtain very accurate fits of our CBS/CCSD(T) and CBS/CCSD(T)+ $\Updelta$ T data points to an analytically simple and computationally efficient extended Lennard Jones form. For the CBS/CCSD(T)+ $\Updelta$ T+SO curves, we obtain dissociation energies of D e?=?226?cm?1 and D e?=?319?cm?1 for Zn2 and Cd2 respectively, in very good agreement with recent theoretical calculations and experimental data. We also present equilibrium distances and rotational and vibrational spectroscopic constants to compare with available theoretical and experimental data. The results obtained for non-relativistically treated Hg2 continue nicely the trends with increasing atom number preset by Zn2 and Cd2, confirming that indeed, relativistic effects account for the known peculiarities for the mercury dimer.  相似文献   

5.
6.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

7.
The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.  相似文献   

8.
The study was carried out on the sorption of heavy metals (Ni2+, Cu2+, Pb2+, and Cd2+) under static conditions from single- and multicomponent aqueous solutions by raw and pretreated clinoptilolite. The sorption has an ion-exchange nature and consists of three stages, i.e., the adsorption on the surface of microcrystals, the inversion stage, and the moderate adsorption in the interior of the microcrystal. The finer clinoptilolite fractions sorb higher amounts of the metals due to relative enriching by the zeolite proper and higher cleavage. The slight difference between adsorption capacity of the clinoptilolite toward lead, copper, and cadmium from single- and multicomponent solutions may testify to individual sorption centers of the zeolite for each metal. The decrease of nickel adsorption from multicomponent solutions is probably caused by the propinquity of its sorption forms to the other metals and by competition. The maximum sorption capacity toward Cd2+ is determined as 4.22 mg/g at an initial concentration of 80 mg/L and toward Pb2+, Cu2+, and Ni2+ as 27.7, 25.76, and 13.03 mg/g at 800 mg/L. The sorption results fit well to the Langmuir and the Freundlich models. The second one is better for adsorption modeling at high metal concentrations.  相似文献   

9.
10.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-arginine is examined. The effects of metal ions (Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+)) and water on structures of Arg x M(H2O)m , m = 0, 1 complexes have been determined theoretically by employing the density functional theories (DFT) and using extended basis sets. Of the three stable complexes investigated, the relative stability of the gas-phase complexes computed with DFT methods (with the exception of K(+) systems) suggests metallic complexes of the neutral L-arginine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of arginine in the presence of the metal cations Li(+), Na(+), K(+), Mg(2+), Ca(2+), Ni(2+), Cu(2+), and Zn(2+) were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to arginine is exhibited by the Cu(2+) cation. The computed Gibbs energies DeltaG(o) are negative, span a rather broad energy interval (from -150 to -1500 kJ/mol), and are appreciably lowered upon hydration.  相似文献   

11.
The sodium salt of the bis(2-mercapto-1-methylimidazolyl)borate anion [Bm(Me)](-) and those of the new bis(2-mercapto-1-alkylimidazolyl)borates [Bm(R)](-) (R = Bz, Bu(t), p-Tol) have been readily obtained from NaBH(4) and the appropriate 2-mercapto-1-alkylimidazoles. To contrast the binding preferences of the group 12 metals in a sulfur-rich environment, the four complete series of homoleptic complexes M[Bm(R)](2) (M = Zn, Cd, Hg), including the first bis(mercaptoimidazolyl)borate derivatives of cadmium and mercury, have been prepared. X-ray diffraction studies of Cd[Bm(Me)](2) and M[Bm(tBu)](2) (M = Zn, Cd, Hg) show the presence of distorted tetrahedral [MS(4)] central cores supplemented by two weak vicinal M.H-B bonds, interactions which appear to be a common feature in the coordination chemistry of Bm(R) ligands. In the case of zinc, it has been found that only in the presence of bulky ligands, as in Zn[Bm(tBu)](2), may an unexpected expansion in the coordination number from four to six be induced. This observation suggests the viability of octahedral intermediates in the processes whereby certain zinc enzymes transfer or exchange metal ions.  相似文献   

12.
Heavy metals are non-biodegradable and carcinogenic pollutants with great bio-accumulation potential. Their ubiquitous occurrence in water and soils has caused serious environmental concerns. Effective strategies that can eliminate the heavy metal pollution are urgently needed. Here the adsorption potential of seven heavy metal cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) with 20 amino acids was systematically investigated with Density Functional Theory method. The binding energies calculated at B3LYP-D3/def2TZVP level showed that the contribution order of amino acid side chains to the binding affinity was carboxyl > benzene ring > hydroxyl > sulfhydryl > amino group. The affinity order was inversely proportional to the radius and charge transfer of heavy metal cations, approximately following the order of: Ni2+ > Fe3+ > Cu2+ > Hg2+ > Zn2+ > Cd2+ > Mn2+. Compared to the gas-phase in other researches, the water environment has a significant influence on structures and binding energies of the heavy metal and amino acid binary complexes. Collectively, the present results will provide a basis for the design of a chelating agent (e.g., adding carboxyl or a benzene ring) to effectively remove heavy metals from the environment.  相似文献   

13.
At present, heavy metal pollution has become a major environmental problem, influencing the survival of human and other creatures. Developing heavy metal ion adsorbents, which are environment friendly, of low cost and good performance is one of the effective means to solve heavy metal pollution. Rich low-grade diatomite mineral, as raw material, was modified with calcium carbonate to improve the adsorption properties of diatomite for heavy metal ions. The effects of dosage(m), pH, adsorbing time(t), temperature(T) and concentration of adsorbent(c) on the removal rate of heavy metal ions(Cu2+, Pb2+, Zn2+ and Cd2+) were studied. The results show that under the suitable conditions, T=15 ℃, c=1.5 mmol/L, m=10 g/L, t=60 min, in a weak acid environment, the removal effect of the four kinds of metal ions by modified diatomite is the best.  相似文献   

14.
Superabsorbent materials based on natural products have been synthesized by free radical oxidation of corn starch using a redox system consisting of potassium permanganate and sodium bisulfite. The resulting oxidized starches were characterized by analyzing the variation of carbonyl and carboxyl contents. The swelling ability of these samples has been determined by gravimetric method in water and in saline solutions. The effect of oxidant concentration and bleaching procedure on the water absorption capacity has been studied. The ability to remove heavy metals in water solution has been tested against Cd2+, Ni2+, Pb2+ and Zn2+ ions, showing higher percentage of remotion for the unbleached oxidized starches, in particular against nickel ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Hartree-Fock and DFT (B3LYP) nonrelativistic (scalar relativistic pseudopotentials for the metallic cation) and relativistic (molecular four-component approach coupled to an all-electron basis set) calculations are performed on a series of six nd10 (n+1)s0 [M(H2O)]p+ complexes to investigate their geometry, either planar C2v or nonplanar C(s). These complexes are, formally, entities originating from the complexation of a water molecule to a metallic cation: in the present study, no internal reorganization has been found, which ensures that the complexes can be regarded as a water molecule interacting with a metallic cation. For [Au(H2O)]+ and [Hg(H2O)]2+, it is observed that both electronic correlation and relativistic effects are required to recover the C(s) structures predicted by the four-component relativistic all-electron DFT calculations. However, including the zero-point energy corrections makes these shallow C(s) minima vanish and the systems become floppy. In all other systems, namely [Cu(H2O)]+, [Zn(H2O)]2+, [Ag(H2O)]+, and [Cd(H2O)]2+, all calculations predict a C2v geometry arising from especially flat potential energy surfaces related to the out-of-plane wagging vibration mode. In all cases, our computations point to the quasi-perfect transferability of the atomic pseudopotentials considered toward the molecular species investigated. A rationalization of the shape of the wagging potential energy surfaces (i.e., single well vs. double well) is proposed based on the Constrained Space Orbital Variation decompositions of the complexation energies. Any way of stabilizing the lowest unoccupied orbital of the metallic cation is expected to favor charge-transfer (from the highest occupied orbital(s) of the water ligand), covalence, and, consequently, C(s) structures. The CSOV complexation energy decompositions unambiguously reveal that such stabilizations are achieved by means of relativistic effects for [Au(H2O)]+, and, to a lesser extent, for [Hg(H2O)]2+. Such analyses allow to numerically quantify the rule of thumb known for Au+ which, once again, appears as a better archetype of a relativistic cation than Hg2+. This observation is reinforced due to the especially high contribution of the nonadditive correlation/relativity terms to the total complexation energy of [Au(H2O)]+.  相似文献   

17.
The binding sites of Zn(2+), Cd(2+), and Hg(2+) in complexes with 2-(alpha-hydroxybenzyl)thiamine monophosphate chloride, (LH)(+)Cl(-), have been investigated in the solid state [2-(alpha-hydroxybenzyl)thiamin monophosphate chloride monoprotonated at the phosphate group and protonated at N(1)' is denoted as (LH)(+)Cl(-); therefore, the ligand monoprotonated at the phosphate group and deprotonated at N(1)' is L]. Complexes of formulae MLCl(2), M(LH)Cl(3), and (MCl(4))(2)(-)(LH)(2)(+) (M = Zn(2+), Cd(2+), and Hg(2+)) were isolated in aqueous and methanolic solutions, depending on pH. The crystal structure of the complex of formula HgL(2)Cl(2) was solved, together with that of the free ligand (LH)(+)Cl(-), by X-ray crystallography. HgL(2)Cl(2) crystallizes in C2/c, with a = 32.968(6) ?, b = 7.477(2) ?, c = 21.471(4) ?, beta = 118.19(1) degrees, V = 4665(2) ?(3), and Z = 4. (LH)(+)Cl(-) crystallizes in Cc, with a = 10.951(3) ?, b = 17.579(4) ?, c = 13.373(3) ?, beta = 105.36(2) degrees, V = 2482.4(10) ?(3), and Z = 4. Mercury(II) binds to the N(1') of the pyrimidine ring. Both ligands are in the S conformation [Phi(T) = -98.1(9) degrees and Phi(P) = 176.1(10) degrees for HgL(2)Cl(2) and Phi(T) = 104.1(5) degrees and Phi(P) = 171.9(6) degrees for (LH)(+)Cl(-)]. (31)P and (13)C NMR spectra, together with vibrational spectra (IR/Raman), are used to deduce the binding sites of the metal and the protonation states of the ligand at various pH values. It is found that solid-state (31)P NMR spectroscopy is particularly useful in characterizing these complexes as the (31)P shielding tensors are sensitive to the state of the phosphate group. On the other hand, the (31)P NMR spectra indicate that direct bonding between Zn(2+) and Cd(2+) to the phosphate can occur under certain preparation conditions. Solid-state (13)C NMR and vibrational (IR/Raman) spectroscopic results are also in agreement with the other techniques.  相似文献   

18.
The electron capture dissociation (ECD) and collision-induced dissociation (CID) of complexes of polyamidoamine (PAMAM) dendrimers with metal ions Ag+, Cu2+, Zn2+, Fe2+, and Fe3+ were determined by Fourier transform ion cyclotron resonance mass spectrometry. Complexes were of the form [PD + M + mH]5+ where PD = generation two PAMAM dendrimer with amidoethanol surface groups, M = metal ion, m = 2−4. Complementary information regarding the site and coordination chemistry of the metal ions can be obtained from the two techniques. The results suggest that complexes of Fe3+ and Cu2+ are coordinated via both core tertiary amines, whereas coordination of Ag+ involves a single core tertiary amine. The Zn2+ and Fe2+ complexes do not appear to involve coordination by the dendrimer core.  相似文献   

19.
20.
The novel dimeric germanotungstates [M(4)(H(2)O)(2)(GeW(9)O(34))(2)](12)(-) (M = Mn(2+), Cu(2+), Zn(2+), Cd(2+)) have been synthesized and characterized by IR spectroscopy, elemental analysis, magnetic measurements, and (183)W-NMR spectroscopy. X-ray single-crystal analyses were carried out on Na(12)[Mn(4)(H(2)O)(2)(GeW(9)O(34))(2)].38H(2)O (Na(12)()-1), which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.0419(8) A, b = 17.8422(10) A, c = 21.1626(12) A, beta = 93.3120(10) degrees, and Z = 2; Na(11)Cs(2)[Cu(4)(H(2)O)(2)(GeW(9)O(34))(2)]Cl.31H(2)O (Na(11)()Cs-2) crystallizes in the triclinic system, space group P, with a = 12.2338(17) A, b = 12.3833(17) A, c = 15.449(2) A, alpha = 100.041(2) degrees, beta = 97.034(2) degrees, gamma = 101.153(2) degrees, and Z = 1; Na(12)[Zn(4)(H(2)O)(2)(GeW(9)O(34))(2)].32H(2)O (Na(12)()-3) crystallizes in the triclinic system, space group P, with a = 11.589(3) A, b = 12.811(3) A, c = 17.221(4) A, alpha = 97.828(6) degrees, beta = 106.169(6) degrees, gamma = 112.113(5) degrees, and Z = 1; Na(12)[Cd(4)(H(2)O)(2)(GeW(9)O(34))(2)].32.2H(2)O (Na(12)()-4) crystallizes also in the triclinic system, space group P, with a = 11.6923(17) A, b = 12.8464(18) A, c = 17.616(2) A, alpha = 98.149(3) degrees, beta = 105.677(3) degrees, gamma = 112.233(2) degrees, and Z = 1. The polyanions consist of two lacunary B-alpha-[GeW(9)O(34)](10)(-) Keggin moieties linked via a rhomblike M(4)O(16) (M = Mn, Cu, Zn, Cd) group leading to a sandwich-type structure. (183)W-NMR studies of the diamagnetic Zn and Cd derivatives indicate that the solid-state polyoxoanion structures are preserved in solution. EPR measurements on Na(12)()-1 at frequencies up to 188 GHz and temperatures down to 4 K yield a single, exchange-narrowed peak, at g(iso) = 1.9949, typical of Mn systems, and an upper limit of |D| = 20.0 mT; its magnetization studies still await further theoretical treatment. Detailed EPR studies on Na(11)()Cs-2 over temperatures down to 2 K and variable frequencies yield g( parallel ) = 2.4303 and g( perpendicular ) = 2.0567 and A( parallel ) = 4.4 mT (delocalized over the Cu(4) framework), with |D| = 12.1 mT. Magnetization studies in addition yield the exchange parameters J(1) = -11 and J(2) = -82 cm(-)(1), in agreement with the EPR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号