首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal cerebrosides (monohexosylceramides, or CMHs) exhibit a number of ceramide structural modifications not found in mammalian glycosphingolipids, which present additional challenges for their complete characterization. The use of Li+ cationization, in conjunction with electrospray ionization mass spectrometry and low energy collision-induced dissociation tandem mass spectrometry (ESI-MS/CID-MS), was found to be particularly effective for detailed structural analysis of complex fungal CMHs, especially minor components present in mixtures at extremely low abundance. A substantial increase in both sensitivity and fragmentation was observed on collision-induced dissociation of [M + Li]+ versus [M + Na]+ of the same CMH components analyzed under similar conditions. The effects of particular modifications on fragmentation were first systematically evaluated by analysis of a wide variety of standard CMHs expressing progressively more functionalized ceramides. These included bovine brain galactocerebrosides with non-hydroxy and 2-hydroxy fatty N-acylation; a plant glucocerebroside having (E/Z)-delta8 in addition to (E)-delta4 unsaturation of the sphingoid base; and a pair of fungal cerebrosides known to be further modified by a branching 9-methyl group on the sphingoid moiety, and to have a 2-hydroxy fatty N-acyl moiety either fully saturated or (E)-delta3 unsaturated. The method was then applied to characterization of both major and minor components in CMH fractions from a non-pathogenic mycelial fungus, Aspergillus niger; and from pathogenic strains of Candida albicans (yeast form); three Cryptococcus spp. (all yeast forms); and Paracoccidioides brasiliensis (both yeast and mycelium forms). The major components of all species examined differed primarily (and widely) in the level of 2-hydroxy fatty N-acyl delta3 unsaturation, but among the minor components a significant degree of additional structural diversity was observed, based on differences in sphingoid or N-acyl chain length, as well as on the presence or absence of the sphingoid delta8 unsaturation or 9-methyl group. Some variants were isobaric, and were not uniformly present in all species, affirming the need for MS/CID-MS analysis for full characterization of all components in a fungal CMH fraction. The diversity in ceramide distribution observed may reflect significant species-specific differences among fungi with respect to cerebroside biosynthesis and function.  相似文献   

2.
The structural characterization of Glycosyl-Inositol-Phospho-Ceramides (GIPCs), which are the main sphingolipids of plant tissues, is a critical step towards the understanding of their physiological function. After optimization of their extraction, numerous plant GIPCs have been characterized by mass spectrometry. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) full scan analysis of negative ions provides a quick overview of GIPC distribution. Clear differences were observed for the two plant models studied: six GIPC series bearing from two to seven saccharide units were detected in tobacco BY-2 cell extracts, whereas GIPCs extracted from A. thaliana cell cultures and leaves were less diverse, with a dominance of species containing only two saccharide units. The number of GIPC species was around 50 in A. thaliana and 120 in tobacco BY-2 cells. MALDI-MS/MS spectra gave access to detailed structural information relative to the ceramide moiety, the polar head, as well as the number and types of saccharide units. Once released from GIPCs, fatty acid chains and long-chain bases were analyzed by GC/MS to verify that all GIPC series were taken into account by the MALDI-MS/MS approach. ESI-MS/MS provided complementary information for the identification of isobaric species and fatty acid chains. Such a methodology, mostly relying on MALDI-MS/MS, should open new avenues to determine structure-function relationships between glycosphingolipids and membrane organization.  相似文献   

3.
Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined.  相似文献   

4.
Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14–26 carbon atoms long in plants and 16–26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose–inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4–inositol phosphoceramide and hexose–(hexuronic acid)3–inositol phosphoceramide in Ulva lactuca.
Figure
Example of GIPC with its three building blocks (fatty acid, FA; long chain base, LCB; polar head) where R1 could be a hydroxyl, an amine or a N-acetylamine group  相似文献   

5.
The dissociation reactions of the adduct ions derived from the four self-complementary deoxydinucleotides, d(ApT), d(TpA), d(CpG), d(GpC), and alkali-metal ions were studied in detail by positive ion electrospray ionization multiple-stage mass spectrometry (ESI-MS(n)). For the [M + H](+) ions of the four deoxydinucleotides, elimination of 5'-terminus base or loss of both of 5'-terminus base and a deoxyribose were the major dissociation pathway. The ESI-MS(n) spectra showed that Li(+), Na(+), and Cs(+) bind to deoxydinucleotides mainly by substituting the H(+) of phosphate group, and these alkali-metal ions preferred to bind to pyrimidine bases rather than purine bases. For a given deoxydinucleotide, the dissociation pathway of [M + K](+) ions differed clearly from that of [M + Li](+), [M + Na](+), and [M + Cs](+) ions. Some interesting and characteristic cleavage reactions were observed in the product-ion spectra of [M + K](+) ions, including direct elimination of deoxyribose and HPO(3) from molecular ions. The fragmentation behavior of the [M + K](+) and [M + W](+) (W = Li, Na, Cs) adduct ions depend upon the sequence of bases, the interaction between alkali-metal ions and nucleobases, and the steric hindrance caused by bases.  相似文献   

6.
A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)‐based methodologies for glycosphingolipidomics have been investigated. Sphingolipid ceramide N‐deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon‐rich substituent (F‐Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb3Cer), three purified bovine brain gangliosides, and four fungal glycosylinositol phosphorylceramides (GIPCs) were de‐N‐acylated, derivatized by prototype F‐Tags, and recovered by solid phase extraction on fluorocarbon‐derivatized silica (F‐SPE). The efficacy of SCDase treatment of GIPCs was here demonstrated for the first time. Compatibility with subsequent per‐N,O‐methylation was established for the F‐tagged Gb3 Cer and purified gangliosides, and extensive mass spectra (MS1 and MS2) consistent with all of the expected products were acquired. The potential use of F‐tagged derivatives for a comprehensive MS based profiling application was then demonstrated on a crude ganglioside mixture extracted from bovine brain. Finally, a simple trial in microarray format demonstrated fixation of F‐tagged GM1 ganglioside to a fluorous glass surface, with the glycan intact and available for interaction with a fluorescent derivative of cholera toxin B chain. The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The fragmentation patterns of a series of dispirocyclopiperazinium dibromides with strong analgesic activity are analyzed by positive ion electrospray ionization mass spectrometry in conjunction with tandem mass spectrometry (ESI-MS(n)). Instead of the parent molecular ions, the fragment ions [M-Br](+) are detected as characteristic double peaks and usually the base peaks. Meanwhile, the fragment ions [M-2Br](2+) are unique for this series of diquaternary ammonium dibromides and show high intensity. Besides the common fragmentation patterns around the carbonyl group, elimination of hydrogen bromide from [M--Br](+) ions is another important pathway. Following the elimination, an interesting rearrangement takes place in the unsaturated spirocyclopiperazine and transforms it into a dihydropyrrole structure, whose fragmentations are similar to its precursor ion in the succeeding steps.  相似文献   

8.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

9.
Glycosphingolipids with R(f) values higher than those of monoglycosylceramides (MGCs) in normal phase HPTLC appear to be normal components of myelin. A series of such low polarity components, referred to as 'fast moving cerebrosides' (FMCs), have been isolated from rat brain, and two of these fractions (FMC-1 and FMC-2) were found to be novel derivatives of galactosylceramide (GalCer) exhibiting O-acetylation at the 3-hydroxy group of the sphingoid moiety, and incorporating either non-hydroxy or 2-hydroxy fatty-N-acylation (Dasgupta S, Levery SB, Hogan EL. J. Lipid Res. 2002; 43: 751-761). Similar to the parent compounds, the 3-O-acetyl-sphingoid derivatives exhibit considerable diversity with respect to fatty-N-acyl chain length, manifested by heterogeneous molecular ion (Li(+) adduct) profiles. However, a detailed analysis of the individual molecular variants ('lipoforms'), e.g. by tandem MS/CID-MS analysis, was not carried out. In addition, several other FMCs distinguished by even lower polarity (higher HPTLC R(f) values) were isolated but have remained uncharacterized. For this study, analysis of both the known and unknown FMC components was carried out by positive ion ESI-MS and MS/CID-MS of their Li(+) adducts on a Q-TOF mass spectrometer. Since a Q-TOF instrument has not yet been applied to MS of lithiated cerebrosides and FMCs, MS/CID-MS spectra of bovine brain GalCer (both types) and the previously characterized rat brain FMCs (FMC-1 and FMC-2), having 3-O-acetylation of the sphingoid, were systematically acquired and their fragmentation behavior compared. This was followed by systematic analysis of previously uncharacterized FMC fractions (FMC-3 through FMC-5/6/7). The GalCer and FMC components proved to be amenable to analysis by this technique, and the data confirm that the latter are all related 3-O-acetyl-sphingoid derivatives, with the higher R(f) components carrying additional O-acetyl modifications on the galactosyl residue, which further reduce their polarity. The utility of the technique, the structures of unknown FMCs, and their characteristic fragmentation patterns are described.  相似文献   

10.
Electrospray ionization (ESI) and liquid secondary ionization (LSI) mass spectrometry were applied for characterization of glycosphingolipids (GSLs) isolated in their peracetylated form from four Agelas marine sponge species. Since peracetylated glycosphingolipids are not soluble in solvents traditionally used for ESI, lithium chloride was added to the samples in order to obtain lithium cationized molecules. Although the preferred fragmentation seems to be the sequential loss of acetic acid molecules, it was found that tandem mass spectra obtained from peracetylated diglycosyl ceramides might provide direct information about the structure of the long-chain base (formation of W'/Z0 fragments). The utility of ESI and LSI in the analysis of these compounds has also been compared. It was found that the tandem mass spectra obtained by LSI-MS/MS experiments could provide information about the chain-length (carbon atom number) variations within a certain ceramide mass. Thus, from one of our samples, 25 different ceramide compositions have been identified from 8 precursor (Z0) ions. Comparison of the two ionization modes (LSI and ESI) highlights the fact that molecular mass distributions obtained by LSI-MS, especially the presence of unsaturated species, have to be interpreted carefully. For the first time a direct high-performance liquid chromatography (HPLC)/ESI-MS method was used for characterization of complex mixtures of peracetylated GSLs. The results demonstrate that HPLC/ESI-MS is able to analyze mono- and diglycosylated GSLs, and other kinds of glycolipids that are actually present in the sample.  相似文献   

11.
Structural characterization of glycosphingolipids as their lithiated adducts using low-energy collisional-activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) is described. The tandem mass spectra contain abundant fragment ions reflecting the long chain base (LCB), fatty acid, and the sugar constituent of the molecule and permit unequivocal identification of cerebrosides, di-, trihexosyl ceramides and globosides. The major fragmentation pathways arise from loss of the sugar moiety to yield a lithiated ceramide ion, which undergoes further fragmentation to form multiple fragment ions that confirm the structures of the fatty acid and LCB. The mechanisms for the ion formation and the possible configuration of the fragment ions, resulting from CAD of the lithiated molecular ions ([M + Li]+) of monoglycosylceramides are proposed. The mechanisms were supported by CAD and source CAD tandem mass spectra of various cerebrosides and of their analogous molecules prepared by H-D exchange. Constant neutral loss and precursor ion scannings to identify galactosylceramides with sphingosine or sphinganine LCB subclasses, and with specific N-2-hydroxyl fatty acid subclass in mixtures are also demonstrated.  相似文献   

12.
Eight phenolic compounds, obtained by in vitro fermentation of quercetin, quercetin-3-glucoside and quercetin-3-rhamnoglucoside were analysed by electrospray ionisation mass spectrometry (ESI-MS). Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) was performed on the [M - H]- precursor ions to obtain specific fragmentation. Typical fragmentation of the phenolic acids was loss of 44 (CO2) and 18 (H2O) u. Production of m/z 108 by loss of neutral radicals, e.g. HCO2, CH3 or HCO, was also favoured. Structures of the compounds, numbered 1-8, were suggested based on the fragmentation patterns.  相似文献   

13.
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MS(n)). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MS(n) spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.  相似文献   

14.
The study of several structural variations (the length, the degree of unsaturation and hydroxylation of the alkyl chains, the number and nature of osidic residues) helped understand the behaviour of neutral glycosphingolipids (GSLs) on porous graphitic carbon stationary phase (PGC). Atmospheric pressure photoionization mass spectrometry (APPI) and tandem mass spectrometry were used to perform the detection and the identification of molecular species in positive mode where [M+H](+) and [M-H(2)O+H](+) ions provided structural information on the fatty acid and the sphingoid base. The retention of GSLs increased with the hydrocarboneous volume of their alkyl chains and with the number of osidic residues in agreement with hydrophobic properties and polar retention effect of graphite, respectively. The presence of polar groups, such as OH-group or double bond within alkyl chains, decreased their retention. The coupling of chromatography on PGC with APPI tandem mass spectrometry detection appeared a powerful technique to discriminate isobaric molecules. Isobaric solutes differing by the position of two double bonds or by the repartition of hydrocarboneous skeleton were discriminated according to their chromatographic comportment or their mass spectrum, respectively. Among isobaric molecules, only few structures differing by the nature of osidic residue were not discriminated (i.e. glucosylceramide and galactosylceramide with similar ceramide skeleton were co-eluted and no difference in mass spectra was observed).  相似文献   

15.
Ceramides are important intracellular second messengers that play a role in the regulation of cell growth, differentiation and programmed cell death. Analysis of these second messengers requires sensitive and specific analytical method to detect individual ceramide species and to differentiate between them. Eight molecular species of ceramide were identified from the marine sponge Haliclona cribricutis using electrospray ionization tandem mass spectrometry (ESI-MS/MS). From this marine sponge N-hencicosanoyl (N21:0) to N-hexasanoyl (N26:0) Octadecasphing-4 (E)-enine have been reported for the first time. The ESI-MS spectra gave several strong protonated molecular ion [M+H](+) with the corresponding bis (2-ethyl hexyl) phthalate adduct [M+H+DHEP](+). The collision induced dissociation (CID) on ceramides at m/z 622.7337, 636.7645, 650.7789, 664.7925 and 678.8130 conducted at low-collision energy produced well characteristic product ions at m/z 252.31, 264.32, 278.33, 282.33 and 296 .35 for d18:1 sphingosine regardless of the length of the fatty chain. The MS/MS of the Phthalate adduct [M+H+DHEP](+) at m/z 1013.1820, 1027.1971, 1041.2176, 1055.2394 and 1069.2573 also yielded characterizing product ions for sphingosine and confirmed the molecular ion at m/z 391 for bis (2-ethyl hexyl) phthalate. The major ions in the [M+H](+) and [M+H+DHEP](+) were due to neutral loss of [M+H-H(2)O](+) and [M+H(H(2)O)(2)](+).  相似文献   

16.
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MS(n) has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.  相似文献   

17.
The fragmentation patterns of a series of three novel synthesized 3-hydroxy-4-phenyl-tetrahydro-1,5-benzodiazepin-2-ones (1-3), possessing the same backbone structure, were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques. A simple methodology, based on the use of ESI (positive ion mode) and by increasing the declustering potential in the atmospheric pressure/vacuum interface, collision-induced dissociation (CID), was used to enhance the formation of the fragment ions. In general, the novel synthetic 1,5-benzodiazepine derivatives afforded, in the gas phase, both protonated and sodiated molecules. This led to the confirmation of the molecular masses and chemical structures of the studied compounds. Exact accurate masses were measured using a high-resolution ESI-quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid mass spectrometer instrument.The breakdown routes of the protonated molecules were rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole-hexapole-quadrupole (QhQ) tandem mass spectrometer. All the observed major fragmentations for the 1,5-benzodiazepines occurred in the saturated seven-membered ring containing the nitrogen atoms. These formed a multitude of product ions by different breakdown routes. All the major fragmentations involved cleavages of the N-1-C-2 and C-3-C-4 bonds. These occurred with concomitant eliminations of glyoxal, benzene and ethyl formate, forming the product ion at m/z 119, which was observed in all the studied compounds. In addition, an unique simultaneous CID-MS/MS fragmentation was noticed for the 1,5-benzodiazepines 1 and 3, which occurred by a pathway dictated by the substituent located on the N-1-position. It was evident that the aromatic ring portion of the 1,5-benzodiazepines was resistant to CID-MS/MS fragmentation. Re-confirmation of the various geneses of the product ions was achieved by conducting a series of precursor ion scans. ESI-MS and CID-MS/MS analyses have thus proven to be a specific and very sensitive method for the structural identification of these novel 1,5-benzodiazepine derivatives.  相似文献   

18.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

19.
High-performance liquid chromatography with an evaporative light scattering detector and electrospray ionization multistage tandem mass spectrometry (HPLC/ELSD/ESI-MS(n)) was used to identify spirostanol saponins in a saponin extract of Solanum torvum. The fragmentation behavior of saponins was studied using ESI-MS(1-3) in positive ion mode. The MS(n) spectra of the [M+H](+) ions provide structural information including aglycone type and the nature and sequence of sugars. The use of ELSD allowed the profiling of the nonchromophore-containing saponins in this plant. The MS analysis established in this study with known saponins was successfully applied to tentatively identify two new siprostanol glycosides, neosolaspigenin 6-O-beta-D-quinovopyranoside and solagenin 6-O-[beta-D-xylopyranosyl-(1 --> 3)-O-beta-D-quinovopyranoside].  相似文献   

20.
Monensin A and B were studied by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) and the fragment ions were confirmed by accurate-mass measurements. Analyses were performed on both a quadrupole time-of-flight (QTOF) and a Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. The analysis revealed that fragment ions were produced by Grob-Wharton fragmentations and pericyclic rearrangements in addition to various simple neutral losses. A study of the protonated and sodiated sodium salt revealed different fragmentation pathways for these species, thus complementary structural information could be gained. A complete fragmentation pathway of monensin A and B protonated sodium salt [(M-H+Na)+H])+) and sodiated sodium salt [(M-H+Na)+Na](+) is proposed. MS(3) analysis confirmed the separate fragmentation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号