首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equilibrium structures, binding energies, and vibrational spectra of the clusters CH3F(HF)1 n 3 and CH2F2(HF)1 n 3 have been investigated with the aid of large-scale ab initio calculations performed at the Møller–Plesset second-order level. In all complexes, a strong C–FH–F halogen–hydrogen bond is formed. For the cases n = 2 and n = 3, blue-shifting C–HF–H hydrogen bonds are formed additionally. Blue shifts are, however, encountered for all C–H stretching vibrations of the fluoromethanes in all complexes, whether they take part in a hydrogen bond or not, in particular also for n = 1. For the case n = 3, blue shifts of the ν(C–H) stretching vibrational modes larger than 50 cm−1 are predicted. As with the previously treated case of CHF3(HF)1 n 3 complexes (A. Karpfen, E. S. Kryachko, J. Phys. Chem. A 107 (2003) 9724), the typical blue-shifting properties are to a large degree determined by the presence of a strong C–FH–F halogen–hydrogen bond. Therefore, the term blue-shifted appears more appropriate for this class of complexes. Stretching the C–F bond of a fluoromethane by forming a halogen–hydrogen bond causes a shortening of all C–H bonds. The shortening of the C–H bonds is proportional to the stretching of the C–F bond.  相似文献   

2.
The C/Si/Ge-analogous compounds rac-Ph(c-C5H9)El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, rac-3a; El=Si, rac-3b; El=Ge, rac-3c) and (c-C5H9)2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 5a; El=Si, 5b; El=Ge, 5c) were prepared in multi-step syntheses. The (R)- and (S)-enantiomers of 3ac were obtained by resolution of the respective racemates using the antipodes of O,O′-dibenzoyltartaric acid (resolution of rac-3a), O,O′-di-p-toluoyltartaric acid (resolution of rac-3b), or 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate (resolution of rac-3c). The enantiomeric purities of (R)-3ac and (S)-3ac were ≥98% ee (determined by 1H-NMR spectroscopy using a chiral solvating agent). Reaction of rac-3ac, (R)-3ac, (S)-3ac, and 5ac with methyl iodide gave the corresponding methylammonium iodides rac-4ac, (R)-4ac, (S)-4ac, and 6ac (3ac4ac; 5ac6ac). The absolute configuration of (S)-3a was determined by a single-crystal X-ray diffraction analysis of its (R,R)-O,O′-dibenzoyltartrate. The absolute configurations of the silicon analog (R)-4b and germanium analog (R)-4c were also determined by single-crystal X-ray diffraction. The chiroptical properties of the (R)- and (S)-enantiomers of 3ac, 3ac·HCl, and 4ac were studied by ORD measurements. In addition, the C/Si/Ge analogs (R)-3ac, (S)-3ac, (R)-4ac, (S)-4ac, 5ac, and 6ac were studied for their affinities at recombinant human muscarinic M1, M2, M3, M4, and M5 receptors stably expressed in CHO-K1 cells (radioligand binding experiments with [3H]N-methylscopolamine as the radioligand). For reasons of comparison, the known C/Si/Ge analogs Ph2El(CH2OH)CH2CH2NR2 (NR2=piperidino; El=C, 7a; El=Si, 7b; El=Ge, 7c) and the corresponding methylammonium iodides 8ac were included in these studies. According to these experiments, all the C/Si/Ge analogs behaved as simple competitive antagonists at M1–M5 receptors. The receptor subtype affinities of the individual carbon, silicon, and germanium analogs 3a–8a, 3b–8b, and 3c–8c were similar, indicating a strongly pronounced C/Si/Ge bioisosterism. The (R)-enantiomers (eutomers) of 3ac and 4ac exhibited higher affinities (up to 22.4 fold) for M1–M5 receptors than their corresponding (S)-antipodes (distomers), the stereoselectivity ratios being higher at M1, M3, M4, and M5 than at M2 receptors, and higher for the methylammonium compounds (4ac) than for the amines (3ac). With a few exceptions, compounds 5ac, 6ac, 7ac, and 8ac displayed lower affinities for M1–M5 receptors than the related (R)-enantiomers of 3ac and 4ac. The stereoselective interaction of the enantiomers of 3ac and 4ac with M1–M5 receptors is best explained in terms of opposite binding of the phenyl and cyclopentyl ring of the (R)- and (S)-enantiomers. The highest receptor subtype selectivity was observed for the germanium compound (R)-4c at M1/M2 receptors (12.9-fold).  相似文献   

3.
Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8–14) and phosphate concentrations (10–4 to 1.0 m) at room temperature (22±2)°C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature,(1) only a limited number of aqueous species [Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2–2), and Cr(OH)3HPO2–4] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations. The log Ko values of reactions involving these species [Cr(OH)3(aq)+H2PO4⇌Cr(OH)3H2PO4; Cr(OH)3(aq)+2H2PO4⇌Cr(OH)3(H2PO4)2–2; Cr(OH)3(aq)+HPO2–4⇌Cr(OH)3HPO2–4] were found to be 2.78±0.3, 3.48±0.3, and 1.97±0.3, respectively.  相似文献   

4.
Exploratory synthesis in the K–In–Ge–As system has yielded the unusual layered compounds K8In8Ge5As17(1) and K5In5Ge5As14(2), both of which contain In–Ge–As layers with interleaved potassium ions, Ge–Ge bonds, InAs4tetrahedra, As–As bonds, and rows of Ge2As6dimers. Compound 1 has As3groups, while compound 2 has infinite As ribbons on both faces of each layer. Unlike compound 1, compound 2 has substitutional defects where indium partially occupies each of the three independent germanium sites in the ratio of 1:5 for In:Ge. This partial occupancy makes 2 an electron-precise compound. The Ge(In)–Ge(In) bond of 2 is longer than the Ge–Ge bond of 1, and this bond lengthening effect was confirmed by performing DFT-MO calculations on the model compounds H3Ge–GeH3and H3Ge–InH3. Possible implications of electron imprecise formulas determined by X-ray crystal structure determinations are discussed. Compound 1: space groupP21/cwitha=18.394 (8) Å,b=19.087 (7) Å,c=25.360 (3) Å,β=105.71 (2)°,V=8571 (4) Å3, andDcalcd=4.45g/cm3forZ=4. Refinement on 4455 reflections yieldedR(Rw)=6.8%(7.8%). Compound 2: space groupC2/mwitha=40.00 (1) Å,b=3.925 (2) Å,c=10.299 (3),β=99.97 (2)°,V=1592 (1) Å3, andDcalcd= 4.55g/cm3forZ=8. Refinement on 1206 reflections yieldedR(Rw)=5.6% (5.7%).  相似文献   

5.
The electric and magnetic properties of the perovskites Nd0.8Na0.2Mn(1−x)CoxO3 (0x0.2) prepared by the usual ceramic procedure were investigated. The insulator-to-metal-like (IM) transition, closely related to a ferromagnetic arrangement, was revealed for the composition of x=0.04 and a similar tendency was detected for x=0. The insulating behavior persists down to low temperatures for higher contents of cobalt ions in spite of the transition to the bulk ferromagnetism. The properties are interpreted in terms of the steric distortion, tilting of the Mn(Co)O6 octahedra and the double-exchange interactions of the type Mn3+–O2−–Mn4+and Mn3.5+δ–O2−–Co2+, respectively. Presence of antiferromagnetic domains in the ferromagnetic matrix for the most of cobalt-substituted samples is supposed.  相似文献   

6.
The synthesis of a new series of six-membered N,N′-diarylsubstituted methylene-bis-dihydro-2H-1,3-benzoxazines (5a-e) was achieved in excellent yields by Mannich-type condensation of N,N′-diarylsubstituted methylene-bis-o-hydroxybenzyl amines (4a- e) with formaldehyde in chloroform at reflux. These amines (4a-e) were obtained by the reduction of N, Nr-diarylsubstituted methylene-bis-o-hydroxybenzyl imines (3a-e) with NaBH4, which inturn were obtained by the condensation of methylene-bissalicylaldehyde (2) with various substituted arylamines.  相似文献   

7.
In order to elucidate the correlation between the relaxor type of phase transition and the percent of the A and B site substitution in the Ba1−xNaxTi1−xNbxO3 solid solution, the dielectric permittivity was carried out in the temperature range 80–600 K. All ceramics of these solid solutions present a ferroelectric–paraelectric phase transition with relaxor and classical character depending on the value of x. With increasing x the three phase transition of pure BaTiO3 are pinched into one rounded dielectric peak, and there is evidence for Vogel–Fulcher type relaxational freezing. Raman spectra of the x=0.3 and x=0.7 compositions taken at various temperatures and measured over the wavenumber range 100–1200 cm−1 confirm that the first order scattering is dominant in phonon bands resulting from both ordered region and disordered matrix.  相似文献   

8.
Electrochemical and spectroscopic (EPR, UV–Vis, IR) studies of the aromatic secondary amines N,N′-diphenyl-1,4-phenylenediamine (DPPD), N-phenyl-N′-isopropyl-p-phenylene diamine (IPPD), N-phenyl-N′-(α-methylbenzyl)-p-phenylenediamine (SPPD) and N-phenyl-N′-(1,3-dimethyl-butyl)-p-phenylenediamine (6PPD), which represent the most important group of antioxidants used in the rubber industry, are presented. During oxidation, all the compounds show reversible redox couples in acetonitrile/0.1 M TBABF4. The first oxidation potential depends substantially on the R substituent at the –N′H– moiety. Very similar UV–VIS spectra of monocation radicals and dications for all the compounds were observed by applying anodic oxidation as well as oxidation by tert-butyl hydroperoxide both in air and in inert atmosphere. The samples with N′-bonded aliphatic carbon in the molecule (e.g. IPPD) heated in air undergo consecutive chemical reactions leading to the formation of –N′C– group. By the use of RO2 radicals only very low concentration of nitroxide radicals was obtained. Very high concentration of nitroxide radicals was achieved using 3-chloroperbenzoic acid. In the oxidation of investigated aromatic secondary amines with powder PbO2 no EPR spectra were observed and UV–Vis and IR studies indicate the rapid formation of the final dehydrogenated oxidation product.  相似文献   

9.
The sidechain conformational potential energy hypersurfaces (PEHS) for the γL, βL, αL, and αD backbone conformations of N-acetyl- -aspartate-N′-methylamide were generated. Of the 81 possible conformers initially expected for the aspartate residue, only seven were found after geometric optimizations at the B3LYP/6-31G(d) level of theory. No stable conformers could be located in the δL, L, γD, δD, and D backbone conformations. The ‘adiabatic’ deprotonation energies for the endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide were calculated by comparing their optimized relative energies against those found for the seven stable conformers of N-acetyl- -aspartate-N′-methylamide. Sidechain conformational PEHSs were also generated for the estimation of ‘vertical’ deprotonation energies for both endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide. All backbone–sidechain (N–HO–C) and backbone–backbone (N–HO=C) hydrogen bond interactions were analyzed. A total of two backbone–backbone and four backbone–sidechain interactions were found for N-acetyl- -aspartate-N′-methylamide. The deprotonated sidechain of N-acetyl- -aspartate-N′-methylamide may allow the aspartyl residue to form strong hydrogen bond interactions (since it is negatively charged) which may be significant in such processes as protein–ligand recognition and ligand binding. As a primary example, the molecular geometry of the aspartyl residue may be important in peptide folding, such as that in the RGD tripeptide.  相似文献   

10.
Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N′-bis(hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal–HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate–hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)–(III) and Mn(II)–(III) pairs demonstrated the efficiency of 40 000–400 000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(II), Fe(II) ions in reaction with HBED have been discussed.  相似文献   

11.
Direct and simultaneous determination of Al, Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sb, U, V and Zn in diluted (1:10 v:v) seawater from the Antarctic Ocean and the Venice Lagoon at the ng mL–1 and pg mL–1 level has been performed by using an inductively coupled plasma sector field mass spectrometer (ICP-SFMS). Samples were analysed by using a PFA microflow nebulizer coupled with a desolvation system or a PFA microflow nebulizer coupled with a Teflon spray chamber, respectively. Measurements were carried out at low (LR, m/m=300), medium (MR, m/m=3,000) and high (HR, m/m=7,500) resolutions depending on the studied isotope. To avoid contamination, sample pre-treatment was carried out in a clean laboratory equipped with a Class 100 vertical laminar flow hood. Concentration ranges (minimum–maximum in ng mL–1) found in the Antarctic seawater samples (in depth profiles) were: Ag 0.0004–0.0018, As 0.69–1.32, Cd 0.031–0.096, Co 0.018–0.065, Cr 0.18–0.46, Cu 0.04–1.58, Fe 0.13–1.63, Mn 0.02–0.12, Mo 5.97–12.46, Pb 0.007–0.074, Sb 0.033–0.088, U 0.5–1.9, V 0.6–2.5 and Zn 0.16–0.80. Concentration ranges (min–max in ng mL–1) found in the Venice Lagoon water samples (temporal profile from a benthic chamber experiment) were: Al 0.24–0.61, Ag 0.007–0.031, As 1.42–2.27, Cd 0.050–0.182, Co 0.440–1.461, Cr 0.15–0.34, Cu 0.81–2.46, Fe 0.25–1.66, Mn 11.6–31.7, Mo 6.50–10.6, Pb 0.047–0.225, Sb 0.240–0.492, U 1.7–3.3, V 1.3–2.8 and Zn 5.20–21.5. The detection limits range between 0.06 pg mL–1 for Ag and U to 15 pg mL–1 for Fe. In order to check the accuracy of the analytical procedure, measurements of the trace elements in a certified reference material (coastal Atlantic seawater, CASS-4-NRCC) were compared with the certified values. In addition, the results from the Antarctic and Venice Lagoon samples were compared with those obtained by using different analytical techniques.  相似文献   

12.
We have observed that He–Ne laser irradiation of E. coli strain KY706/pPL-1 leads to induction of photolyase gene, phr. The magnitude of induction was found to depend on the He–Ne laser fluence, fluence rate and post-irradiation incubation period in the nutrient medium. The optimum values for fluence and fluence rate were 7×103 J/m2 and 100 W/m2, respectively, and the induction of phr gene was observed to saturate beyond an incubation period of 2 h. Experiments carried out with singlet oxygen quenchers and with D2O suggest that the effect is mediated via singlet oxygen. Photoreactivation studies carried out after UVC exposure of both the He–Ne laser-exposed as well as unexposed cells showed a larger surviving fraction in the He–Ne laser pre-irradiated cells. This can be attributed to He–Ne laser irradiation-induced induction of phr expression. However, since even without photoreactivating light He–Ne laser pre-irradiated cells show higher survival against UVC radiation it appears that He–Ne laser irradiation induces both light-dependent as well as dark DNA repair processes.  相似文献   

13.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

14.
The phase composition and electroconduction in air of solid electrolytes (Ce0.8Sm0.2)1 − x CuxO2 − δ (CSCu), where x = 0, 2, 5, 10, and 20 mol % and which are synthesized using the ceramic technology, are studied. Adding an additive of CuO lowers the CSCu sintering temperature by 100– 200°C and leads to the formation of single-phase solid solutions of a fluorite type up to x = 10 mol %. The electroconductivity of the CSCu electrolytes remains practically invariant upon adding up to 5 mol % Cu and equals 0.089–0.095 and 0.017–0.021 S cm−1 at 800 and 600°C. The sintering, adhesion, and electroconductance of composite cathodes based on La0.8Sr0.2MnO3 with 40% CSCu and their electrochemical behavior in air in the temperature interval 900–1000°C on carrying electrolyte Zr0.9Y0.1O1.95 with a CSCu sublayer containing 2 mol % Cu are studied.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 656–661.Original Russian Text Copyright © 2005 by Bogdanovich, Gorelov, Balakireva, Dem’yanenko.  相似文献   

15.
Three possible stable conformations of N-methyleneformamide were studied using Weinhold's Natural bond orbital method. Wavefunctions for the NBO analysis were obtained using B3LYP hybrid functional with 6-311+G(d,p) extended basis set. gauche conformation was predicted to be more stable than trans conformation by ≈2.3 kcal/mol in agreement with earlier studies. At the same time it was found that this preference is due to the strong πC1–N2↔πC3–O4 and σC3–H5nσN2 repulsive interactions in the planar conformations, and additional conjugative stabilization of the gauche conformation.  相似文献   

16.
44 members of thecompound series Ph4−nMRn (M=Si, Ge, Sn, Pb; R=o-, m-, p-Tol; n=0–4) were synthesized (15 newcompounds). The crystal structures of Ph3Sn (o-Tol) and PhSn (o-Tol)3 were determined and compared to 16 known structures. Subject to the distanced (M–C), an interplay between through-space ππ repulsion and πσ attraction leads to either elongated or compressed tetrahedral geometry. 29 Si-, 119 Sn- and 207 Pb-NMR chemical shifts were determined in solution and in the solid state. 73 Ge chemical shifts were measured only in solution. Anupfield or downfield sagging of the chemical shifts along each series is rationalized in terms of a πσcharge transfer which is constrained by torsion of the aromatic groups.  相似文献   

17.
Uracil–(H2O)n (n = 1–7) clusters were systemically investigated by ab initio methods and the newly constructed ABEEMσπ/MM fluctuating charge model. Water molecules have been gradually placed in an average plane containing uracil. The geometries of 38 uracil–water complexes were obtained using B3LYP/6-311++G** level optimizations, and the energies were determined at the MP2/6-311++G** level with BSSE corrections. The ABEEMσπ/MM potential model gives reasonable properties of these clusters when comparing with the present ab initio data. For interaction energies, the root mean square deviation is 0.96 kcal/mol, and the linear coefficient reaches 0.997. Furthermore, the ABEEMσπ charges changed when H2O interacted with the uracil molecule, especially at the sites where the hydrogen bond form. These results show that the ABEEMσπ/MM model is fine giving the overall characteristic hydration properties of uracil–water systems in good agreement with the high-level ab initio calculations.  相似文献   

18.
Single crystals of new quaternary compounds Sr8Cu3In4N5 and Sr0.53Ba0.47CuN were prepared, respectively, from a Sr–Cu–In–Na melt under 7 MPa of N2 and from a Sr–Ba–Cu–In–Na melt under 0.5 MPa of N2 by slow cooling from 1023 to 823 K. The crystal structures were determined by single-crystal X-ray diffraction. Sr8Cu3In4N5 has an orthorhombic structure (space group, Immm, Z=2, a=3.8161(5) Å, b=12.437(2) Å, c=18.902(2) Å), and is isostructural with Ba8Cu3In4N5. It contains nitridocuprates of isolated units 0[CuN2] and one-dimensional linear chains 1[CuN2/2] and one-dimensional indium clusters 1[In2In2/2]. Sr0.53Ba0.47CuN crystallizes in an orthorhombic cell, space group Pbcm, Z=4, a=5.4763(7) Å, b=9.2274(12) Å, c=9.0772(12) Å. The structure contains infinite zig-zag chains 1[CuN2/2] which kink at every second nitrogen atom.  相似文献   

19.
The structures of several Ga2O3–In2O3–SnO2 phases were investigated using high-resolution electron microscopy, X-ray diffraction, and Rietveld analysis of time-of-flight neutron diffraction data. The phases, expressed as Ga4−4xIn4xSnn−4O2n−2 (n=6 and 7–17, odd), are intergrowths between the β-gallia structure of (Ga,In)2O3 and the rutile structure of SnO2. Samples prepared with n≥9 crystallize in C2/m and are isostructural with intergrowths in the Ga2O3–TiO2 system. Samples prepared with n=6 and n=7 are members of an alternative intergrowth series that crystallizes in P2/m. Both intergrowth series are similar in that their members possess 1-D tunnels along the b axis. The difference between the two series is described in terms of different crystallographic shear plane operations (CSP) on the parent rutile structure.  相似文献   

20.
The influence of the composition on the AC carrier transport of the composite films containing ferromagnetic CoFeZr nanoparticles in amorphous aluminium oxide matrix has been investigated. The films 3–5 μm in thicknesses and with variable composition 30 at.% < X < 60 at.% were sputtered on a single substrate from the compound target in the chamber with argon–oxygen gas mixture. TEM and SEM measurements and Mössbauer spectroscopy data have shown that all the studied films of (Co0.45Fe0.45Zr0.10)X(Al2O3)1 − X with 30 at.% < X < 65 at.% have revealed the structure with crystalline granular metallic alloy (with particles of a few nanometers in size) and amorphous alumina. AC conductance measurements were performed over the frequency range 102–106 Hz at temperatures from 80 to 330 K. DC conductance measurements have been carried out for this temperature region also. The presence of two critical regions for the metallic fraction (X1 = 33–40% and X2 = 50–55%), where diagram “electric property–composition” exhibited pronounced peculiarities, has been confirmed. A qualitative structural model of nanocomposite was offered to explain this behavior. In accordance with the model, the first critical region at X1 is associated with a shift of percolation threshold due to the formation of oxide layer on metallic nanoparticles, owing to the presence of oxygen in gas ambient during the sputtering process. The second critical region of the composition at X2 is ascribed to the formation of percolation net of magnetic metallic nanoparticles in the dielectric amorphous alumina matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号