首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When phenol is photoexcited to its S(1) (1(1)ππ?) state at wavelengths in the range 257.403 ≤ λ(phot) ≤ 275.133 nm the O-H bond dissociates to yield an H atom and a phenoxyl co-product, with the available energy shared between translation and well characterised product vibration. It is accepted that dissociation is enabled by transfer to an S(2) (1(1)πσ?) state, for which the potential energy surface (PES) is repulsive in the O-H stretch coordinate, R(O-H). This S(2) PES is cut by the S(1) PES near R(O-H) = 1.2 ? and by the S(0) ground state PES near R(O-H) = 2.1 ?, to give two conical intersections (CIs). These have each been invoked-both in theoretical studies and in the interpretation of experimental vibrational activity-but with considerable controversy. This paper revisits the dynamic mechanisms that underlie the photodissociation of phenol and substituted phenols in the light of symmetry restrictions arising from torsional tunnelling degeneracy, which has been neglected hitherto. This places tighter symmetry constraints on the dynamics around the two CIs. The non-rigid molecular symmetry group G(4) necessitates vibronic interactions by a(2) modes to enable coupling at the inner, higher energy (S(1)/S(2)) CI, or by b(1) modes at the outer, lower energy (S(2)/S(0)) CI. The experimental data following excitation through many vibronic levels of the S(1) state of phenol and substituted phenols demonstrate the effective role of the ν(16a) (a(2)) ring torsional mode in enabling O-H bond fission. This requires tunnelling under the S(1)/S(2) CI, with a hindering barrier of ~5000 cm(-1) and with the associated geometric phase effect. Quantum dynamic calculations using new ab initio PESs provide quantitative justification for this conclusion. The fates of other excited S(1) modes are also rationalised, revealing both spectator modes and intramolecular vibrational redistribution between modes. A common feature in many cases is the observation of an extended, odd-number only, progression in product mode ν(16a) (i.e., the parent mode which enables S(1)/S(2) tunnelling), which we explain as a Franck-Condon consequence of a major change in the active vibration frequency. These comprehensive results serve to confirm the hypothesis that O-H fission following excitation to the S(1) state involves tunnelling under the S(1)/S(2) CI-in accord with conclusions reached from a recent correlation of the excited state lifetimes of phenol (and many substituted phenols) with the corresponding vertical energy gaps between their S(1) and S(2) PESs.  相似文献   

2.
The potential energy surfaces of the ground and valence excited states of both 3H-diazirine and diazomethane have been studied computationally by mean of the CASSCF method in conjunction with the cc-pVTZ basis set. The energies of the critical points found on such surfaces have been recomputed at the CASPT2/cc-pVTZ level. Additionally, ab initio direct dynamic trajectory calculations have been carried out on the S(1) and S(2) surfaces, starting each trajectory run at the region dominated by the conformational molecular rearrangement of diazomethane. It is found that both isomers are interconnected along a C(s)() reaction coordinate on each potential surface. Radiationless deactivation of the corresponding S(1) state of each isomer occurs through the same point on the surface, an S(1)/S(0) conical intersection. Thereafter, the system has enough energy to surmount the barrier which leads to dissociation products (CH(2) + N(2)) on S(0) state. Therefore, photoexcitation to S(1) state of either diazirine of diazomethane produces methylene in its lower singlet state on a very short time scale (ca. 100 fs). Furthermore, both isomers can generate excited singlet carbene when they are excited onto the S(2) surface; in this case, they lose the activation energy passing through another common S(2)/S(1) conical intersection and then proceed to dissociation into carbene and N(2) on the S(1) surface. For the special case of methylene, it rapidly experiences deexcitation to S(0) state.  相似文献   

3.
This study aims to use the concept of ground‐state reactivity index formalism within density functional theory (DFT) to predict the behavior of the excited state through the response function produced by weak electric field on chlorinated methanes and chlorinated benzenes. A comparison was made between the geometry of ground state and the excited state for those moieties through configuration interaction (CI) method with Austin Model 1 Hamiltonian over the optimized geometry of DFT at the ground state. Results obtained through these two methodologies suggested that in terms of polarizability and heat of formation, DFT can reproduce the excited state qualitatively. Again, those results can be further validated through UV spectral data, generated using CI method. The reactivity index proposition at ground state shows the potential of DFT to simulate excitation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Electronically nonadiabatic processes such as ultrafast internal conversion (IC) from an upper electronic state (S(1)) to the ground electronic state (S(0)) though a conical intersection (CI), can play an essential role in the initial steps of the decomposition of energetic materials. Such nonradiative processes following electronic excitation can quench emission and store the excitation energy in the vibrational degrees of freedom of the ground electronic state. This excess vibrational energy in the ground electronic state can dissociate most of the chemical bonds of the molecule and can generate stable, small molecule products. The present study determines ultrafast IC dynamics of a model nitramine energetic material, dimethylnitramine (DMNA). Femtosecond (fs) pump-probe spectroscopy, for which a pump pulse at 271 nm and a probe pulse at 405.6 nm are used, is employed to elucidate the IC dynamics of this molecule from its S(1) excited state. A very short lifetime of the S(1) excited state (~50 ± 16 fs) is determined for DMNA. Complete active space self-consistent field (CASSCF) calculations show that an (S(1)/S(0))(CI) CI is responsible for this ultrafast decay from S(1) to S(0). This decay occurs through a reaction coordinate involving an out-of-plane bending mode of the DMNA NO(2) moiety. The 271 nm excitation of DMNA is not sufficient to dissociate the molecule on the S(1) potential energy surface (PES) through an adiabatic NO(2) elimination pathway.  相似文献   

5.
The low-lying excited singlet states of the keto, enol, and keto-imine tautomers of cytosine have been investigated employing a combined density functional/multireference configuration interaction (DFT/MRCI) method. Unconstrained geometry optimizations have yielded out-of-plain distorted structures of the pi --> pi and n --> pi excited states of all cytosine forms. For the keto tautomer, the DFT/MRCI adiabatic excitation energy of the pi --> pi state (4.06 eV including zero-point vibrational energy corrections) supports the resonant two-photon ionization (R2PI) spectrum (Nir et al. Phys. Chem. Chem. Phys. 2002, 5, 4780). On its S1 potential energy surface, a conical intersection between the 1pipi state and the electronic ground state has been identified. The barrier height of the reaction along a constrained minimum energy path amounts to merely 0.2 eV above the origin and explains the break-off of the R2PI spectrum. The 1pipi minimum of the enol tautomer is found at considerably higher excitation energies (4.50 eV). Because of significant geometry shifts with respect to the ground state, long vibrational progressions are expected, in accord with experimental observations. For the keto-imine tautomer, a crossing of the 1pipi potential energy surface with the ground-state surface has been found, too. Its n --> pi minimum (3.27 eV) is located well below the conical intersection between the pi --> pi and S0 states, but it will be difficult to observe because of its small transition moment. The identified conical intersections of the pi --> pi excited states of the keto cytosine tautomers are made responsible for the ultrafast decay to the electronic ground states and thus may explain their subpicoseconds lifetimes.  相似文献   

6.
The photophysics of the two isomers of octadecaborane(22), anti- and syn-B(18)H(22), have been studied by UV-vis spectroscopic techniques and theoretical computational methods. In air-saturated hexane, anti-B(18)H(22) shows fluorescence with a high quantum yield, Φ(F) = 0.97, and singlet oxygen O(2)((1)Δ(g)) production (Φ(Δ) ~ 0.008). Conversely, isomer syn-B(18)H(22) shows no measurable fluorescence, instead displaying much faster, picosecond nonradiative decay of excited singlet states. Computed potential energy hypersurfaces (PEHs) for both isomers rationalize these data, pointing to a deep S(1) minimum for anti-B(18)H(22) and a conical intersection (CI) between its S(0) and S(1) states that lies 0.51 eV higher in energy. Such an energy barrier to nonradiative relaxation is not present in the PEH of syn-B(18)H(22), and the system therefore has sufficient initial energy on excitation to reach the (S(0)/S(1)) CI and to then decay to the ground state without fluorescence. The computational analysis of the geometries at stationary points along the PEH of both isomers shows that the determining factor for the dissimilar photophysics of anti- and syn-B(18)H(22) may be due to the significant differences in the geometrical rearrangements at their respective conical intersections. Thus, the syn isomer shows one very large, B-B elongation of 1.2 ? from 1.8 ? in the ground state to 3.0 ? at the CI, whereas the anti isomer shows smaller elongations (below 1 ?) in several B-B connectivities at its (S(0)/S(1))(CI). The absorbed energy in S(1) for the anti-B(18)H(22) is therefore redistributed vibrationally into several regions of the molecule rather than almost completely into a single vibrational mode as in the case for the syn isomer. The consequent prolonged S(1) lifetime for the anti isomer allows for relaxation via fluorescence.  相似文献   

7.
Ultrafast excited state dynamics of spirilloxanthin in solution and bound to the light-harvesting core antenna complexes from Rhodospirillum rubrum S1 were investigated by means of femtosecond pump-probe spectroscopic measurements. The previously proposed S? state of spirilloxanthin was clearly observed both in solution and bound to the light-harvesting core antenna complexes, while the lowest triplet excited state appeared only with spirilloxanthin bound to the protein complexes. Ultrafast formation of triplet spirilloxanthin bound to the protein complexes was observed upon excitation of either spirilloxanthin or bacteriochlorophyll-a. The anomalous reaction of the ultrafast triplet formation is discussed in terms of ultrafast energy transfer between spirilloxanthin and bacteriochlorophyll-a.  相似文献   

8.
Precise knowledge of the excitation energies of the lowest excited states S(1) and S(2) of the carotenoids violaxanthin, lutein, and zeaxanthin is a prerequisite for a fundamental understanding of their role in light harvesting and photoprotection during photosynthesis. By means of density functional theory (DFT) and time-dependent DFT (TDDFT), the electronic and structural properties of the ground and first and second excited states are studied in detail. According to our calculations, all-s-cis-zeaxanthin and s-cis-lutein conformers possess lower total ground-state energies than the corresponding s-trans conformers. Thus, only s-cis isomers are probably physiologically relevant. Furthermore, the influence of geometric relaxation on the energies of the ground state and S(1) and S(2) states has been studied in detail. It is demonstrated that the energies of these states change significantly if the carotenoid adopts the equilibrium geometry of the S(1) state. Considering these energetic effects in the interpretation of S(1) excitation energies obtained from fluorescence and transient absorption spectroscopy shifts the S(1) excitation energies about 0.2 eV to higher energy above the excitation energy of the chlorophyll a.  相似文献   

9.
The gas-phase reactions of two dipositive actinide ions, Th(2+) and U(2+), with CH(4), C(2)H(6), and C(3)H(8) were studied by both experiment and theory. Fourier transform ion cyclotron resonance mass spectrometry was employed to study the bimolecular ion-molecule reactions; the potential energy profiles (PEPs) for the reactions, both observed and nonobserved, were computed by density functional theory (DFT). The experiments revealed that Th(2+) reacts with all three alkanes, including CH(4) to produce ThCH(2)(2+), whereas U(2+) reacts with C(2)H(6) and C(3)H(8), with different product distributions than for Th(2+). The comparative reactivities of Th(2+) and U(2+) toward CH(4) are well explained by the computed PEPs. The PEPs for the reactions with C(2)H(6) effectively rationalize the observed reaction products, ThC(2)H(2)(2+) and UC(2)H(4)(2+). For C(3)H(8) several reaction products were experimentally observed; these and additional potential reaction pathways were computed. The DFT results for the reactions with C(3)H(8) are consistent with the observed reactions and the different products observed for Th(2+) and U(2+); however, several exothermic products which emerge from energetically favorable PEPs were not experimentally observed. The comparison between experiment and theory reveals that DFT can effectively exclude unfavorable reaction pathways, due to energetic barriers and/or endothermic products, and can predict energetic differences in similar reaction pathways for different ions. However, and not surprisingly, a simple evaluation of the PEP features is insufficient to reliably exclude energetically favorable pathways. The computed PEPs, which all proceed by insertion, were used to evaluate the relationship between the energetics of the bare Th(2+) and U(2+) ions and the energies for C-H and C-C activation. It was found that the computed energetics for insertion are entirely consistent with the empirical model which relates insertion efficiency to the energy needed to promote the An(2+) ion from its ground state to a prepared divalent state with two non-5f valence electrons (6d(2)) suitable for bond formation in C-An(2+)-H and C-An(2+)-C activated intermediates.  相似文献   

10.
Time-resolved infrared (TR-IR) absorption spectroscopy in both the femtosecond and nanosecond time domain has been applied to examine the photolysis of benzoic acid in acetonitrile solution following either 267 nm or 193 nm excitation. By combining the ultrafast and nanosecond TR-IR measurements, both the excited states and the photofragments have been detected and key mechanistic insights were obtained. We show that the solvent interaction modifies the excited state relaxation pathways and thus the population dynamics, leading to different photolysis behavior in solution from that observed in the gas phase. Vibrational energy transfer to solvents dissipates excitation energy efficiently, suppressing the photodissociation and depopulating the excited S(2) or S(3) state molecules to the lowest T(1) state with a rate of ~2.5 ps after a delayed onset of ~3.7 ps. Photolysis of benzoic acid using 267 nm excitation is dominated by the formation of the T(1) excited state and no photofragments could be detected. The results from TR-IR experiments using higher energy of 193 nm indicate that photodissociation proceeds more rapidly than the vibrational energy transfer to solvents and C-C bond fission becomes the dominant relaxation pathway in these experiments as featured by the prominent observation of the COOH photofragments and negligible yield of the T(1) excited state. The measured ultrafast formation of T(1) excited state supports the existence of the surface intersections of S(2)/S(1), S(2)/T(2), and S(1)/T(1)/T(2), and the large T(1) quantum yield of ~0.65 indicates the importance of the excited state depopulation to triplet manifold as the key factor affecting the photophysical and photochemical behavior of the monomeric benzoic acid.  相似文献   

11.
Ultrafast transient absorption spectroscopy monitors the solution-phase dynamics of 2-phenylthiophene (PT), 2-methyl-5-phenylthiophene (MPT), and 2,4-dimethyl-5-phenylthiophene (DMPT) following excitation to the first singlet excited state. Rapid spectral evolution indicates that structural relaxation on the S(1) potential energy surface occurs within ~100 fs, whereas the picosecond-scale kinetics reveal efficient intersystem crossing to the triplet manifold of states. The rate of intersystem crossing is significantly faster for DMPT (21.6 ± 1.0 ps) than for PT (102 ± 5 ps) and MPT (132 ± 3 ps). The measurements provide new limits on the timescale for a competing isomerization reaction in which the phenyl group changes position on the thiophene ring. The role of methyl substitution in driving the intersystem crossing is discussed.  相似文献   

12.
In this paper, we identify the most efficient decay and isomerization route of the S(1), T(1), and S(0) states of azobenzene. By use of quantum chemical methods, we have searched for the transition states (TS) on the S(1) potential energy surface and for the S(0)/S(1) conical intersections (CIs) that are closer to the minimum energy path on the S(1). We found only one TS, at 60 degrees of CNNC torsion from the E isomer, which requires an activation energy of only 2 kcal/mol. The lowest energy CIs, lying also 2 kcal/mol above the S(1) minimum, were found on the torsion pathway for CNNC angles in the range 95-90 degrees. The lowest CI along the inversion path was found ca. 25 kcal/mol higher than the S(1) minimum and was characterized by a highly asymmetric molecular structure with one NNC angle of 174 degrees. These results indicate that the S(1) state decay involves mainly the torsion route and that the inversion mechanism may play a role only if the molecule is excited with an excess energy of at least 25 kcal/mol with respect to the S(1) minimum of the E isomer. We have calculated the spin-orbit couplings between S(0) and T(1) at several geometries along the CNNC torsion coordinate. These spin-orbit couplings were about 20-30 cm(-)(1) for all the geometries considered. Since the potential energy curves of S(0) and T(1) cross in the region of twisted CNNC angle, these couplings are large enough to ensure that the T(1) lifetime is very short ( approximately 10 ps) and that thermal isomerization can proceed via the nonadiabatic torsion route involving the S(0)-T(1)-S(0) crossing with preexponential factor and activation energy in agreement with the values obtained from kinetic measures.  相似文献   

13.
A series of azobenzenes was studied using ab initio methods to determine the substituent effects on the isomerization pathways. Energy barriers were determined from three-dimensional potential energy surfaces of the ground and electronically excited states. In the ground state (S(0)), the inversion pathway was found to be preferred. Our results show that electron donating substituents increase the isomerization barrier along the inversion pathway, whereas electron withdrawing substituents decrease it. The inversion pathway of the first excited state (S(1)) showed trans --> cis barriers with no curve crossing between S(0) and S(1). In contrast, a conical intersection was found between the ground and first excited states along the rotation pathway for each of the azobenzenes studied. No barriers were found in this pathway, and we therefore postulate that after n --> pi (S(1) <-- S(0)) excitation, the rotation mechanism dominates. Upon pi --> pi (S(2) <-- S(0)) excitation, there may be sufficient energy to open an additional pathway (concerted-inversion) as proposed by Diau. Our potential energy surface explains the experimentally observed difference in trans-to-cis quantum yields between S(1) and S(2) excitations. The concerted inversion channel is not available to the remaining azobenzenes, and so they must employ the rotation pathway for both n --> pi and pi --> pi excitations.  相似文献   

14.
The stationary and intersection structures on the S(0) and S(1) potential energy surfaces of CH(3)COCH(2)Cl have been determined by the CAS(10,8)/cc-pVDZ optimizations and their relative energies are refined by the CASPT2//CAS(10,8)/cc-pVDZ single-point calculations. Non-adiabatic molecular dynamics simulations were performed on the basis of the state-averaged CAS(10,8)/cc-pVDZ calculated energies, energy gradients, and Hessian matrix for the S(0) and S(1) states. It is found that the features of the S(1) potential energy surface and non-adiabatic effect control the selectivity of the two α-C-C bond fissions, which provides a reasonable explanation why one α-C-C bond was observed as a primary channel and the other is ruled out even if CH(3)COCH(2)Cl is excited at 193 nm. The β-C-Cl fission is determined to be a dominant channel once the CH(3)COCH(2)Cl molecule is excited to the S(1) state and the β-C-Cl:α-C-C branching ratio is estimated by the RRKM rate theory to be 15:1 at 193 nm, which is overestimated in comparison with the value of ~11:1 inferred experimentally. The present calculation reveals that the α-C-C fission might take place in the ground electronic state as a result of the S(1) → S(0) internal conversion upon photolysis at 308 nm. However, the measured kinetic energy distributions of the α-C-C fission products suggest that the fission does not involve internal conversion to the ground state. To solve this issue, we need to perform non-adiabatic quantum dynamics simulation on accurate S(0), S(1), and S(2) potential energy surfaces, which is still a challenging task currently.  相似文献   

15.
In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.  相似文献   

16.
Ultrafast transient broadband absorption spectroscopy based on the Pump-Supercontinuum Probe (PSCP) technique has been applied to characterize the excited state dynamics of the newly-synthesized artificial β-carotene derivative 13,13'-diphenyl-β-carotene in the wavelength range 340-770 nm with ca. 60 fs cross-correlation time after excitation to the S(2) state. The influence of phenyl substitution at the polyene backbone has been investigated in different solvents by comparing the dynamics of the internal conversion (IC) processes S(2)→ S(1) and S(1)→ S(0)* with results for β-carotene. Global analysis provides IC time constants and also time-dependent S(1) spectra demonstrating vibrational relaxation processes. Intramolecular vibrational redistribution processes are accelerated by phenyl substitution and are also solvent-dependent. DFT and TDDFT-TDA calculations suggest that both phenyl rings prefer an orientation where their ring planes are almost perpendicular to the plane of the carotene backbone, largely decoupling them electronically from the polyene system. This is consistent with several experimental observations: the up-field chemical shift of adjacent hydrogen atoms by a ring-current effect of the phenyl groups in the (1)H NMR spectrum, a small red-shift of the S(0)→ S(2)(0-0) transition energy in the steady-state absorption spectrum relative to β-carotene, and almost the same S(1)→ S(0)* IC time constant as in β-carotene, suggesting a similar S(1)-S(0) energy gap. The oscillator strength of the S(0)→ S(2) transition of the diphenyl derivative is reduced by ca. 20%. In addition, we observe a highly structured ground state bleach combined with excited state absorption at longer wavelengths, which is typical for an "S* state". Both features can be clearly assigned to absorption of vibrationally hot molecules in the ground electronic state S(0)* superimposed on the bleach of room temperature molecules S(0). The S(0)* population is formed by IC from S(1). These findings are discussed in detail with respect to alternative interpretations previously reported in the literature. Understanding the dynamics of this type of artificial phenyl-substituted carotene systems appears useful regarding their future structural optimization with respect to enhanced thermal stability while keeping the desired photophysical properties.  相似文献   

17.
Ultrafast excited-state intermolecular proton transfer (PT) reactions in 7-azaindole(methanol)(n) (n = 1-3) [7AI(MeOH)(n=1-3)] complexes were performed using dynamics simulations. These complexes were first optimized at the RI-ADC(2)/SVP-SV(P) level in the gas phase. The ground-state structures with the lowest energy were also investigated and presented. On-the-fly dynamics simulations for the first-excited state were employed to investigate reaction mechanisms and time evolution of PT processes. The PT characteristics of the reactions were confirmed by the nonexistence of crossings between S(ππ*) and S(πσ*) states. Excited-state dynamics results for all complexes exhibit excited-state multiple-proton transfer (ESmultiPT) reactions via methanol molecules along an intermolecular hydrogen-bonded network. In particular, the two methanol molecules of a 7AI(MeOH)(2) cluster assist the excited-state triple-proton transfer (ESTPT) reaction effectively with highest probability of PT.  相似文献   

18.
A 1,2-bis(2-methylbenzothiophene-3-yl)maleimide model ( DAE) and two dyads in which this photochromic unit is coupled, via a direct nitrogen-carbon bond ( Ru-DAE) or through an intervening methylene group ( Ru-CH 2-DAE ), to a ruthenium polypyridine chromophore have been synthesized. The photochemistry and photophysics of these systems have been thoroughly characterized in acetonitrile by a combination of stationary and time-resolved (nano- and femtosecond) spectroscopic methods. The diarylethene model DAE undergoes photocyclization by excitation at 448 nm, with 35% photoconversion at stationary state. The quantum yield increases from 0.22 to 0.33 upon deaeration. Photochemical cycloreversion (quantum yield, 0.51) can be carried out to completion upon excitation at lambda > 500 nm. Photocyclization takes place both from the excited singlet state (S 1), as an ultrafast (ca. 0.5 ps) process, and from the triplet state (T 1) in the microsecond time scale. In Ru-DAE and Ru-CH 2-DAE dyads, efficient photocyclization following light absorption by the ruthenium chromophore occurs with oxygen-sensitive quantum yield (0.44 and 0.22, in deaerated and aerated solution, respectively). The photoconversion efficiency is almost unitary (90%), much higher than for the photochromic DAE alone. Efficient quenching of both Ru-based MLCT phosphorescence and DAE fluorescence is observed. A complete kinetic characterization has been obtained by ps-ns time-resolved spectroscopy. Besides prompt photocyclization (0.5 ps), fast singlet energy transfer takes place from the excited diarylethene to the Ru(II) chromophore (30 ps in Ru-DAE, 150 ps in Ru-CH 2-DAE ). In the Ru(II) chromophore, prompt intersystem crossing to the MLCT triplet state is followed by triplet energy transfer to the diarylethene (1.5 ns in Ru-DAE, 40 ns in Ru-CH 2-DAE ). The triplet state of the diarylethene moiety undergoes cyclization in a microsecond time scale. The experimental results are complemented with a combined ab initio and DFT computational study whereby the potential energy surfaces (PES) for ground state (S 0) and lowest triplet state (T 1) of the diarylethene are investigated along the reaction coordinate for photocyclization/cycloreversion. At the DFT level of theory, the transition-state structures on S 0 and T 1 are similar and lean, along the reaction coordinate, toward the closed-ring form. At the transition-state geometry, the S 0 and T 1 PES are almost degenerate. Whereas on S 0 a large barrier (ca. 45 kcal mol (-1)) separates the open- and closed-ring minima, on T 1 the barriers to isomerization are modest, cyclization barrier (ca. 8 kcal mol (-1)) being smaller than cycloreversion barrier (ca. 14 kcal mol (-1)). These features account for the efficient sensitized photocyclization and inefficient sensitized cycloreversion observed with Ru-DAE. Triplet cyclization is viewed as a nonadiabatic process originating on T 1 at open-ring geometry, proceeding via intersystem crossing at transition-state geometry, and completing on S 0 at closed-ring geometry. A computational study of the prototypical model 1,2-bis(3-thienyl)ethene is used to benchmark DFT results against ab initio CASSCF//CASPT2 results and to demonstrate the generality of the main topological features of the S 0 and T 1 PES obtained for DAE. Altogether, the results provide strong experimental evidence and theoretical rationale for the triplet pathway in the photocyclization of photochromic diarylethenes.  相似文献   

19.
The fast nonradiative decay dynamics of the lowest two excited pipi(*) electronic states (S(2) and S(3)) of hexafluorobenzene have been investigated by using femtosecond time-resolved time-of-flight mass spectrometry. The molecules were excited at wavelengths between 265 nm > or = lambda(pump) > or = 217 nm and probed by four- and three-photon ionization at lambda(probe)=775 nm. The observed temporal profiles exhibit two exponential decay times (tau(1)=0.54-0.1 ps and tau(2)=493-4.67 ps, depending on the excitation wavelength) and a superimposed coherent oscillation with vibrational frequency nu(osc)=97 cm(-1) and damping time tau(D) that is two to three times longer than the respective tau(1). The first decay component (tau(1)) is assigned to rapid radiationless transfer from the excited optically bright pipi(*) electronic state (S(2) or S(3), respectively) through a conical intersection (CI) to the lower-lying optically dark pisigma(*) state (S(1)) of the molecule; the second component (tau(2)) is attributed to the subsequent slower relaxation from the S(1) state back to the electronic ground state (S(0)). tau(2) dramatically decreases with increasing vibronic excitation energy up to the CI connecting the pisigma(*) with the S(0) state. The coherent oscillation is identified as nuclear motion along the out-of-plane vibration nu(16a) (notation as for benzene), which has e(2u) symmetry and acts as coupling mode between the pipi(*) and pisigma(*) states.  相似文献   

20.
The goal of this work is to produce high yields of long-lived AQ(*-)/dA(*+) charge transfer (CT) excited states (or photoproducts). This goal fits within a larger context of trying generally to produce high yields of long-lived CT excited states within DNA nucleoside conjugates that can be incorporated into DNA duplexes. Depending upon the energetics of the anthraquinonyl (AQ) (3)(pi,pi) state as well as the reduction potentials of the subunits in particular anthraquinonyl-adenine conjugates, CT quenching of the AQ (3)(pi,pi*) state may or may not occur in polar organic solvents. In MeOH, bis(3',5'-O-acetyl)-N(6)-(anthraquinone-2-carbonyl)-2'-deoxyadenosine (AQCOdA) behaves as intended and forms a (3)(AQ(*-)/dA(*+)) CT state with a lifetime of 3 ns. However, in nonpolar THF the AQ(*-)/dA(*+) CT states of AQCOdA are too high in energy to be formed, and in DMSO a (1)(AQ(*-)/dA(*+)) CT state is formed but lives only 6 ps. Although the lowest energy excited state for AQCOdA in MeOH is a (3)(AQ(*-)/dA(*+)) CT state, for N(6)-(anthraquinone-2-methylenyl)-2'-deoxyadenosine (AQMedA) in the same solvent it is a (3)(pi,pi*) state. Changing the linking carbonyl in AQCOdA to methylene in AQMedA makes the anthraquinonyl subunit harder to reduce by 166 mV. This raises the energy of the (3)(AQ(*-)/dA(*+)) CT state above that of the (3)(pi,pi*) in AQMedA. The conclusion is that anthraquinonyl-dA conjugates will not have lowest energy AQ(*-)/dA(*+) CT states in polar organic solvents unless the anthraquinonyl subunit is also substituted with an electron-withdrawing group that raises the AQ-subunit's reduction potential above that of AQ. A key finding in this work is that the lifetime of the (3)(AQ(*-)/dA(*+)) CT excited state (ca. 3 ns) is ca. 500-times longer than that of the corresponding (1)(AQ(*-)/dA(*+)) CT excited state (ca. 6 ps).'  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号