首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid-state (SS) NMR spectroscopy is a powerful technique for studying challenging biological systems, but it often suffers from low sensitivity. A longitudinal relaxation optimization scheme to enhance the signal sensitivity of HSQC experiments in SSNMR spectroscopy is reported. Under the proposed scheme, the 1H spins of 1H–X (15N or 13C) are selected for signal acquisition, whereas other vast 1H spins are flipped back to the axis of the static magnetic field to accelerate the spin recovery of the observed 1H spins, resulting in enhanced sensitivity. Three biological systems are used to evaluate this strategy, including a seven-transmembrane protein, an RNA, and a whole-cell sample. For all three samples, the proposed scheme largely shortens the effective 1H longitudinal relaxation time and results in a 1.3–2.5-fold gain in sensitivity. The selected systems are representative of challenging biological systems for observation by means of SSNMR spectroscopy; thus indicating the general applicability of this method, which is particularly important for biological samples with a short lifetime or with limited sample quantities.  相似文献   

2.
(15)N spin relaxation data have provided a wealth of information on protein dynamics in solution. Standard R(1), R(1)(rho), and NOE experiments aimed at (15)N[(1)H] amide moieties are complemented in this work by HA(CACO)N-type experiments allowing the measurement of nitrogen R(1) and R(1)(rho) rates at deuterated (15)N[(2)D] sites. Difference rates obtained using this approach, R(1)((15)N[(1)H]) - R(1)((15)N[(2)D]) and R(2)((15)N[(1)H]) - R(2)((15)N[(2)D]), depend exclusively on dipolar interactions and are insensitive to (15)N CSA and R(ex) relaxation mechanisms. The methodology has been tested on a sample of peptostreptococcal protein L (63 residues) prepared in 50% H(2)O-50% D(2)O solvent. The results from the new and conventional experiments are found to be consistent, with respect to both local backbone dynamics and overall protein tumbling. Combining several data sets permits evaluation of the spectral density J(omega(D) + omega(N)) for each amide site. This spectral density samples a uniquely low frequency (26 MHz at a 500 MHz field) and, therefore, is expected to be highly useful for characterizing nanosecond time scale local motions. The spectral density mapping demonstrates that, in the case of protein L, J(omega(D) + omega(N)) values are compatible with the Lipari-Szabo interpretation of backbone dynamics based on the conventional (15)N relaxation data.  相似文献   

3.
Transverse relaxation-optimized spectroscopy (TROSY) or generation of heteronuclear multiple quantum coherences during the frequency labeling period and TROSY during the acquisition period have been combined either with cross-correlated relaxation-induced polarization transfer (CRIPT) or cross-correlated relaxation-enhanced polarization transfer (CRINEPT) to obtain two-dimensional (2D) solution NMR correlation spectra of (15)N,(2)H-labeled homo-oligomeric macromolecules with molecular weights from 110 to 800 kDa. With the experimental conditions used, the line widths of the TROSY-components of the (1)H- and (15)N-signals were of the order of 60 Hz at 400 kDa, whereas, for structures of size 800 kDa, the line widths were about 75 Hz for (15)N and 110 Hz for (1)H. This paper describes the experimental schemes used and details of their setup for individual measurements. The performance of NMR experiments with large structures depends critically on the choice of the polarization transfer times, the relaxation delays between subsequent recordings, and the water-handling routines. Optimal transfer times for 2D [(15)N,(1)H]-CRIPT-TROSY experiments in H(2)O solutions were found to be 6 ms for a molecular weight of approximately 200 kDa, 2.8 ms for 400 kDa, and 1.4 ms for 800 kDa. These data validate theoretical predictions of inverse proportionality between optimal transfer time and size of the structure. The proton longitudinal relaxation times in H(2)O solution were found to be of the order of 0.8 s for structure sizes around 200 kDa, 0.4 s at 400 kDa, and 0.3 s at 800 kDa, which enabled the use of recycle times below 1 s. Since improper water handling results in severe signal loss, the water resonance was kept along the z-axis during the entire duration of the experiments by adjusting each water flip-back pulse individually.  相似文献   

4.
NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for each of the others. Sequence-specific assignments were determined for the backbone (15)N signals from nine of the 22 residues and ambiguous assignments for five of the others.  相似文献   

5.
Structural studies of uniformly labeled proteins by magic-angle spinning NMR spectroscopy have rapidly matured in recent years. Site-specific chemical shifts of several proteins have been assigned and structures determined from 2D or 3D data sets containing internuclear distance information. Here we demonstrate the application of a complementary technique for constraining protein backbone geometry using a site-resolved 3D dipolar-shift pulse sequence. The dipolar line shapes report on the relative orientations of 1H-15N[i] to 1H-15N[i+1] dipole vectors, constraining the torsion angles phi[i] and psi[i]. In addition, from the same 3D data set, several 1H-15N[i] to1H-15N[i+2] line shapes are extracted to constrain the torsion angles phi[i], psi[i], phi[i+1], and psi[i+1]. We report results for the majority of sites in the 56-residue beta1 immunoglobulin binding domain of protein G (GB1), using 3D experiments at 600 MHz 1H frequency. Excellent agreement between the SSNMR results and a new 1.14 A crystal structure illustrate the general potential of this technique for high-resolution structural refinement of solid proteins.  相似文献   

6.
NMR at 900 MHz     
The very first high-resolution NMR spectra recorded at 900 MHz in July 2000 have demonstrated the benefits of increased magnetic field strength for studies of large biomolecules such as proteins and nucleic acids. Increased sensitivity and resolution for such molecules can only be observed in experiments that are optimized for transverse relaxation (TROSY). Substantial effects of magnetic alignment can easily be observed not only in paramagnetic proteins, but even in small molecules, such as chloroform. Such effects can be very useful for structural studies of biopolymers. The extreme resolution allows studies of very weak interactions in proteins. For instance, long-range H/D isotope effects are easily observed in H-N correlation experiments. The first systematic studies of relaxation properties of N-15 nuclei have been carried out for proteins at 500, 600, 800, and 900 MHz.  相似文献   

7.
Using solid-state NMR spectroscopy, we have detected and characterized ultrafast intramolecular proton tautomerism in the N-H-N hydrogen bonds of solid N, N'-diphenyl-6-aminofulvene-1-aldimine ( I) on the microsecond-to-picosecond time scale. (15)N cross-polarization magic-angle-spinning NMR experiments using (1)H decoupling performed on polycrystalline I- (15)N 2 and the related compound N-phenyl- N'-(1,3,4-triazole)-6-aminofulvene-1-aldimine ( II) provided information about the thermodynamics of the tautomeric processes. We found that II forms only a single tautomer but that the gas-phase degeneracy of the two tautomers of I is lifted by solid-state interactions. Rate constants, including H/D kinetic isotope effects (KIEs), on the microsecond-to-picosecond time scale were obtained by measuring and analyzing the longitudinal (15)N and (2)H relaxation times of I- (15)N 2, I- (15)N 2- d 10, and I- (15)N 2- d 1 over a wide temperature range. In addition to the microcrystalline modification, a novel amorphous modification of I was found and studied. In this modification, proton transfer is much faster than in the crystalline form. For both modifications, we observed large H/D KIEs that were temperature-dependent at high temperatures and temperature-independent at low temperatures. These findings are interpreted in terms of a simple quasiclassical tunneling model proposed by Bell and modified by Limbach. We obtained evidence that a reorganization energy is necessary in order to compress the N-H-N hydrogen bond and achieve a molecular configuration in which the barrier for H transfer is reduced and tunneling or an over-barrier reaction can occur.  相似文献   

8.
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.  相似文献   

9.
We demonstrate constraint of peptide backbone and side-chain conformation with 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift, magic-angle spinning NMR experiments. In these experiments, polarization is transferred from (15)N[i] by ramped SPECIFIC cross polarization to the (13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1] resonances and evolves coherently under the correlated (1)H-(15)N and (1)H-(13)C dipolar couplings. The resulting set of frequency-labeled (15)N(1)H-(13)C(1)H dipolar spectra depend strongly upon the molecular torsion angles phi[i], chi1[i], and psi[i - 1]. To interpret the data with high precision, we considered the effects of weakly coupled protons and differential relaxation of proton coherences via an average Liouvillian theory formalism for multispin clusters and employed average Hamiltonian theory to describe the transfer of (15)N polarization to three coupled (13)C spins ((13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1]). Degeneracies in the conformational solution space were minimized by combining data from multiple (15)N(1)H-(13)C(1)H line shapes and analogous data from other 3D (1)H-(13)C(alpha)-(13)C(beta)-(1)H (chi1), (15)N-(13)C(alpha)-(13)C'-(15)N (psi), and (1)H-(15)N[i]-(15)N[i + 1]-(1)H (phi, psi) experiments. The method is demonstrated here with studies of the uniformly (13)C,(15)N-labeled solid tripeptide N-formyl-Met-Leu-Phe-OH, where the combined data constrains a total of eight torsion angles (three phi, three chi1, and two psi): phi(Met) = -146 degrees, psi(Met) = 159 degrees, chi1(Met) = -85 degrees, phi(Leu) = -90 degrees, psi(Leu) = -40 degrees, chi1(Leu) = -59 degrees, phi(Phe) = -166 degrees, and chi1(Phe) = 56 degrees. The high sensitivity and dynamic range of the 3D experiments and the data analysis methods provided here will permit immediate application to larger peptides and proteins when sufficient resolution is available in the (15)N-(13)C chemical shift correlation spectra.  相似文献   

10.
The speed of multidimensional NMR spectroscopy can be significantly increased by drastically shortening the customary relaxation delay between scans. The consequent loss of longitudinal magnetization can be retrieved if 'new' polarization is transferred from nearby spins. For correlation spectroscopy involving heteronuclei (X=13C or 15N), protons not directly bound to X can repeatedly transfer polarization to the directly bound protons through Hartmann-Hahn mixing. An order of magnitude increase in speed has been observed for the 600 MHz two-dimensional HMQC spectra of amikacin and strychnine using this technique, and it also reduces the noisy F1 ridges that degrade many heteronuclear correlation spectra recorded with short recovery times.  相似文献   

11.
The Gd(III) complexes of the two dimeric ligands [en(DO3A)2] {N,N'-bis[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-10-yl-methylcarbonyl]-N,N'-ethylenediamine} and [pi(DTTA)2]8- [bisdiethylenetriaminepentaacetic acid (trans-1,2-cyclohexanediamine)] were synthesized and characterized. The 17O NMR chemical shift of H2O induced by [en{Dy(DO3A)}2] and [pi{Dy(DTTA)}2]2- at pH 6.80 proved the presence of 2.1 and 2.2 inner-sphere water molecules, respectively. Water proton spin-lattice relaxation rates for [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- at 37.0 +/- 0.1 degrees C and 20 MHz are 3.60 +/- 0.05 and 5.25 +/- 0.05 mM(-1) s(-1) per Gd, respectively. The EPR transverse electronic relaxation rate and 17O NMR transverse relaxation time for the exchange lifetime of the coordinated H2O molecule and the 2H NMR longitudinal relaxation rate of the deuterated diamagnetic lanthanum complex for the rotational correlation time were thoroughly investigated, and the results were compared with those reported previously for other lanthanide(III) complexes. The exchange lifetimes for [en{Gd(DO3A)(H2O)}2] (769 +/- 10 ns) and [pi{Gd(DTTA)(H2O)}2]2- (910 +/- 10 ns) are significantly higher than those of [Gd(DOTA)(H2O)]- (243 ns) and [Gd(DTPA)(H2O)]2- (303 ns) complexes. The rotational correlation times for [en{Gd(DO3A)(H2O)}2] (150 +/- 11 ps) and [pi{Gd(DTTA)(H2O)}2]2- (130 +/- 12 ps) are slightly greater than those of [Gd(DOTA)(H2O)]- (77 ps) and [Gd(DTPA)(H2O)]2- (58 ps) complexes. The marked increase in relaxivity (r1) of [en{Gd(DO3A)(H2O)}2] and [pi{Gd(DTTA)(H2O)}2]2- result mainly from their longer rotational correlation time and higher molecular weight.  相似文献   

12.
Sequential assignment of backbone resonances in larger proteins can be achieved by recording two or more complementary triple-resonance NMR spectra of deuterated proteins. For such proteins, higher fields and experiments based on the TROSY method provide the needed resolution and sensitivity. However, increasingly rapid carbonyl relaxation at the high magnetic field strengths required by TROSY techniques renders assignment strategies that rely on sequential HN(CO)CA-type experiments much less efficient for proteins >40 kDa. Here we present two complementary new experiments, which allow backbone assignments with good sensitivity for larger deuterated proteins. A 3D intra-HNCA experiment provides uniquely the intraresidue connection, while a 3D DQ-HNCA experiment, which detects a (13)C(alpha)(i)()(13)C(alpha)(i-1)() double-quantum (DQ) coherence, contains the sequential information. The experiments work well at high magnetic fields, and their utility is demonstrated on a protein with a correlation time of 28 ns ( approximately 60 kDa). For larger proteins the sensitivity is predicted through simulations which suggest that the approach should work for proteins with correlation times >50 ns.  相似文献   

13.
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.  相似文献   

14.
A protocol for high-quality structure determination based on G-matrix Fourier transform (GFT) NMR is presented. Five through-bond chemical shift correlation experiments providing 4D and 5D spectral information at high digital resolution are performed for resonance assignment. These are combined with a newly implemented (4,3)D GFT NOESY experiment which encodes information of 4D 15N/15N-, 13C(alipahtic)/15N-, and 13C(aliphatic)/13C(aliphatic)-resolved [1H,1H]-NOESY in two subspectra, each containing one component of chemical shift doublets arising from 4D --> 3D projection at omega1:Omega(1H) +/- Omega(X) [X = 15N,13C(aliphatic)]. The peaks located at the centers of the doublets are obtained from simultaneous 3D 15N/13C(aliphatic)/13C(aromatic)-resolved [1H,1H]-NOESY, wherein NOEs detected on aromatic protons are also obtained. The protocol was applied for determining a high-quality structure of the 14 kDa Northeast Structural Genomics consortium target protein, YqfB (PDB ID ). Through-bond correlation and NOESY spectra were acquired, respectively, in 16.9 and 39 h (30 h for shift doublets, 9 h for central peaks) on a 600 MHz spectrometer equipped with a cryogenic probe. The rapidly collected highly resolved 4D NOESY information allows one to assign the majority of NOEs directly from chemical shifts, which yields accurate initial structures "within" approximately 2 angstroms of the final structure. Information theoretical "QUEEN" analysis of initial distance limit constraint networks revealed that, in contrast to structure-based protocols, such NOE assignment is not biased toward identifying additional constraints that tend to be redundant with respect to the available constraint network. The protocol enables rapid NMR data collection for robust high-quality structure determination of proteins up to approximately 20-25 kDa in high-throughput.  相似文献   

15.
A study of the practical applications of the addition of paramagnetic spin relaxation (PSR) ions to a variety of polymers (PLL, PAA, PGA, PVP, and polysaccharides such as hyaluronic acid, chitosan, mannan, and dextran) in solution (D2O and DMSO-d6) is described. Use of Gd(III), Cu(II), and Mn(II) allows a reduction of up to 500% in the 1H longitudinal relaxation times (T1), and so in the time necessary for recording quantitative NMR spectra (sensitivity enhancement) neither an increase of the spectral line width nor chemical shift changes resulted from addition of any of the PSR agents tested. Selective suppression of the 1H and 13C NMR signals of certain components (low MW molecules and polymers) in the spectrum of a mixture was attained thanks to their different sensitivity [transverse relaxation times (T2)] to Gd(III) (PSR filter). Illustration of this strategy with block copolymers (PGA-g-PEG) and mixtures of polymers and low MW molecules (i.e., lactose-hyaluronic acid, dextran-PAA, PVP-glutamic acid) in 1D and 2D NMR experiments (COSY and HMQC) is presented. In those mixtures where PSR and CPMG filters alone failed in the suppression of certain components (i.e., PVP-mannan-hyaluronic acid) due to their similarity of 1H T2 values and sensitivities to Gd(III), use of the PSR filter in combination with CPMG sequences (PSR-CPMG filter) successfully resulted in the sequential suppression of the components (hyaluronic acid first and then mannan).  相似文献   

16.
NMR spin relaxation experiments provide a powerful tool for the measurement of global and local biomolecular rotational dynamics at subnanosecond time scales. Technical limitations restrict most spin relaxation studies to biomolecules weighing less than 10 kDa, considerably smaller than the average protein molecular weight of 30 kDa. In particular, experiments measuring eta(z), the longitudinal (1)H(N)-(15)N dipole-dipole (DD)/(15)N chemical shift anisotropy (CSA) cross-correlated relaxation rate, are among those least suitable for use with larger biosystems. This is unfortunate because these experiments yield valuable insight into the variability of the (15)N CSA tensor over the polypeptide backbone, and this knowledge is critical to the correct interpretation of most (15)N-NMR backbone relaxation experiments, including R(2) and R(1). In order to remedy this situation, we present a new (1)H(N)-(15)N transverse relaxation optimized spectroscopy experiment measuring eta(z) suitable for applications with larger proteins (up to at least 30 kDa). The presented experiment also yields kappa, the site-specific rate of longitudinal (1)H(N)-(1)H(') DD cross relaxation. We describe the eta(z)/kappa experiment's performance in protonated human ubiquitin at 30.0 degrees C and in protonated calcium-saturated calmodulin/peptide complex at 20.0 degrees C, and demonstrate preliminary experimental results for a deuterated E. coli DnaK ATPase domain construct at 34 degrees C.  相似文献   

17.
A suite of novel (5,3)D G2FT triple resonance NMR experiments encoding highly resolved 5D spectral information is presented for sequential resonance assignment of proteins exhibiting high chemical shift degeneracy. Efficient resonance assignment is achieved by separate joint sampling of (i) chemical shifts which solely serve to provide increased resolution and (ii) shifts which also provide sequential connectivities. In these G2FT experiments, two G-matrix transformations are employed. Peaks are resolved along a first GFT dimension at both Omega(15N) + Omega(13C') and Omega(15N) - Omega(13C'), or at Omega(15N) + Omega(13Calpha) and Omega(15N) - Omega(13Calpha), to break backbone 15N,1HN chemical shift degeneracy. Sequential connectivities are established along a second GFT dimension by measuring intraresidue and sequential correlations at 2Omega(13Calpha), Omega(13Calpha + 13Cbeta), and Omega(13Calpha - 13Cbeta), or at Omega(13Calpha + 1Halpha) and Omega(13Calpha - 1Halpha), to resolve 13Calpha/beta,1Halpha chemical shift degeneracy. It is demonstrated that longitudinal proton relaxation optimization of out-and-back implementations suitable for deuterated proteins and nonlinear data sampling combined with maximum entropy reconstruction further accelerate G2FT NMR data acquisition speed. As a result, the spectral information can be obtained within hours, so that (5,3)D G2FT experiments are viable options for high-throughput structure determination in structural genomics. Applications are presented for 17 kDa alpha-helical protein YqbG and 13.5 kDa protein rps24e, targets of the Northeast Structural Genomics consortium, as well as for 9 kDa protein Z-domain. The high resolving power of the G2FT NMR experiments makes them attractive choices to study alpha-helical globular/membrane or (partially) unfolded proteins, thus promising to pave the way for NMR-based structural genomics of membrane proteins.  相似文献   

18.
[structure: see text] A new one-shot NMR experiment (CN-HMBC) is proposed for the simultaneous acquisition of 2D 1H,13C and 1H,15N HMBC spectra. Important sensitivity enhancements (up to 41% simultaneously for both 13C and 15N) or time savings (about 50%) can be achieved when compared to the separate acquisition of individual HMBC spectra. The experiment is highly recommended for the complete structural analysis and simultaneous chemical shift assignments of protonated and nonprotonated 13C and 15N resonances in nitrogen-containing organic compounds.  相似文献   

19.
A novel TROSY (transverse relaxation-optimized spectroscopy) element is introduced that exploits cross-correlation effects between (13)C-(13)C dipole-dipole (DD) coupling and (13)C chemical shift anisotropy (CSA) of aromatic ring carbons. Although these (13)C-(13)C effects are smaller than the previously described [(13)C,(1)H]-TROSY effects for aromatic (13)C-(1)H moieties, their constructive use resulted in further transverse relaxation-optimization by up to 15% for the resonances in a 17 kDa protein-DNA complex. As a practical application, two- and three-dimensional versions of the HCN triple resonance experiment for obtaining ribose-base and intrabase correlations in the nucleotides of DNA and RNA (Sklenar, V.; Peterson, R. D.; Rejante, M. R.; Feigon, J. J. Biomol. NMR 1993, 3, 721-727) have been implemented with [(13)C,(1)H]- and [(13)C,(13)C]-TROSY elements to reduce the rate of transverse relaxation during the polarization transfers between ribose (13)C1' and base (15)N1/9 spins, and between (13)C6/8 and N1/9 within the bases. The resulting TROSY-HCN experiment is user-friendly, with a straightforward, robust experimental setup. Compared to the best previous implementations of the HCN experiment, 2-fold and 5-fold sensitivity enhancements have been achieved for ribose-base and intrabase connectivities, respectively, for (13)C,(15)N-labeled nucleotides in structures with molecular weights of 10 and 17 kDa. TROSY-HCN experiments should be applicable also with significantly larger molecular weights. By using modified TROSY-HCN schemes, the origins of the sensitivity gains have been analyzed.  相似文献   

20.
The coupling between tetramethylguanidine, HN=C(NMe2)2, and coordinated organonitriles in the platinum(II) complexes cis/trans-[PtCl2(RCN)2] (R = Me, Et, Ph) proceeds rapidly under mild conditions to afford the diimino compounds containing two N-bound monodentate 1,3-diaza-1,3-diene ligands [PtCl2{NH=C(R)N=C(NMe2)2}2] (R = Et, trans-1; R = Ph, trans-2; R = Me, cis-3; R = Et, cis-4), and this reaction is the first observation of metal-mediated nucleophilic addition of a guanidine to ligated nitrile. Complexes 1-4 were characterized by elemental analyses (C, H, N), X-ray diffraction, FAB mass spectrometry, IR, and 1H and 13C{1H} NMR spectroscopies; assignment of signals from E/Z-forms of 1,3-diaza-1,3-diene ligands and verification of routes for their Z right harpoon over left harpoon E isomerization in solution were performed using 2D 1H,1H-COSY, 1H,13C-HETCOR, and 1D NOE NMR experiments. The newly formed and previously unknown 1,3-diaza-1,3-dienes NH=C(R)N=C(NMe2)2 were liberated from the platinum(II) complexes [PtCl2{NH=C(R)N=C(NMe2)2}2] (1-3) by substitution with 2 equiv of 1,2-bis-(diphenylphosphino)ethane (dppe) to give the uncomplexed HN=C(R)N=C(NMe2)2 species (5-7) in solution and the solid [Pt(dppe)2](Cl)2. The former were utilized in situ, after filtration of the latter, in the reaction with 1,3-di-p-tolylcarbodiimide, (p-tol)N=C=N(tol-p), in CDCl3 to generate (6E)-N,N-dimethyl-1-(4-methylphenyl)-6-[(4-methylphenyl)imino]-1,6-dihydro-1,3,5-triazin-2-amines) (8-10) due to the [4 + 2]-cycloaddition accompanying elimination of HNMe2. The formulation of 8-10 is based on ESI-MS, 1H, 13C{1H} NMR, and X-ray crystal structures determined for 9 and 10. The reaction of 1,3-diaza-1,3-dienes with 1,3-di-p-tolylcarbodiimide, described in this article, constitutes a novel synthetic approach to a useful class of heterocyclic species like 1,6-dihydro-1,3,5-triazines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号