首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroid glucuronide conjugates of 16,16,17-d(3)-testosterone, epitestosterone, nandrolone (19-nortestosterone), 16,16,17-d(3)-nortestosterone, methyltestosterone, metenolone, mesterolone, 5alpha-androstane-3alpha,17beta-diol, 2,2,3,4,4-d(5)-5alpha-androstane-3alpha,17beta-diol, 19-nor-5alpha-androstane-3alpha,17beta-diol, 2,2,4,4-d(4)-19-nor-5alpha-androstane-3alpha,17beta-diol and 1alpha-methyl-5alpha-androstane-3alpha/beta,17beta-diol were synthesized by means of the Koenigs-Knorr reaction. Selective 3- or 17-O-conjugation of bis-hydroxylated steroids was performed either by glucuronidation of the corresponding steroid ketole and subsequent reduction of the keto group or via a four-step synthesis starting from a mono-hydroxylated steroid including (a) protection of the hydroxy group, (b) reduction of the keto group, (c) conjugation reaction and (d) removal of protecting groups. The mass spectra and fragmentation patterns of all glucuronide conjugates were compared with those of the commercially available testosterone glucuronide and their characterization was performed by gas chromatography/mass spectrometry and nuclear magnetic resonance spectroscopy. For mass spectrometry the substances were derivatized to methyl esters followed by trimethylsilylation of hydroxy groups and to pertrimethylsilylated products using labelled and unlabelled trimethylsilylating agents. The resulting electron ionization mass spectra obtained by GC/MS quadrupole and ion trap instruments, full scan and selected reaction monitoring experiments are discussed, common and individual fragment ions are described and their origins are proposed.  相似文献   

2.
The synthesis of the 3- and 21-glucuronides of allotetrahydrocortisol (allo-THF) and allotetrahydrocortisone (allo-THE) is described. 5 alpha-Dihydrocortisol (5) was prepared by selective hydrogenation of 21-acetoxy-3, 11 beta, 17 alpha-trihydroxy-3,5-pregnadien-20-one 3-ethyl ether (3), followed by acid hydrolysis and saponification. When 5 alpha-dihydrocortisol 21-tetrahydropyranyl ether (6) was treated with potassium tri-sec-butylborohydride in tetrahydrofuran under mild conditions, regioselective and stereoselective reduction at C-3 took place to give allo-THF 21-tetrahydropyranyl either (7). This compound was converted into the 3- and 21-monoacetates of allo-THF and allo-THE, key intermediates. Introduction of the glucuronyl residue at C-3 or C-21 was carried out by means of the Koenigs-Knorr reaction. Prior to saponification yielding the 3-glucuronides (20,23), the alkali-sensitive ketol side chain at C-17 was protected as 20-semicarbazones.  相似文献   

3.
Incubation of cortisol (1) with Gibberella fujikuruoi for 12 days yielded an oxidatively cleaved product, 11beta-hydroxyandrost-4-en-3,17-dione (2), while incubation with Bacillus subtilis and Rhizopus stolonifer yielded the reduced product, 11beta, 17alpha,20,21-tetrahydroxy-(20S)-pregn-4-en-3-one (3). Other reduced products, 11beta, 17alpha, 21-trihydroxy-5alpha-pregnan-3, 20-dione (4) and 3beta, 11beta, 17alpha, 21-tetrahydroxy-5alpha-pregnan-20-one (5) were obtained by incubation of compound 1 with Bacillus cerus. The inhibitory activity of compounds 1-5 against prolyl endopeptidase enzyme (PEP) was also assayed. Compounds 2 (IC50 162.8 microM) and 4 (IC50 157 microM) have shown significant inhibitory activity against PEP.  相似文献   

4.
4Beta,19-dihydroxyandrost-5-en-17-one (6) is an excellent competitive inhibitor of estrogen synthetase (aromatase). Alternate, improved synthesis of this inhibitor was established. Treatment of 19-(tert-butyldimethylsilyloxy)androst-4-en-17-one (8) with m-chloroperbenzoic acid gave a 1.4:1 mixture of 4alpha,5alpha-epoxide 9 and its 4beta,5beta-isomer 10. The mixture was reacted with diI. HClO4 in dioxane to produce principally 4beta,5alpha-diol 11 (80%) of which acetylation followed by dehydration with SOCl2 yielded 4beta,19-diacetoxy-5-ene compound 14 in good yield. Alkaline hydrolysis of diacetate 14 gave 4beta,19-diol 6. The minimum energy conformation of the powerfull aromatase inhibitor 6 was obtained with the PM3 method and compared with that of the structurally related diol steroid, 4-ene-5beta,19-diol 3, a weak competitive inhibitor.  相似文献   

5.
[2 beta,7,7,16 beta-2H4]16 alpha,19-Dihydroxyandrost-4-ene-3,17-dione (14) and [7,7,16 beta-2H3]3 beta,16 alpha,19-trihydroxyandrost-5-en-17-one (16), with high isotopic purity, respectively, were synthesized from unlabeled 3 beta-(tert-butyldimethylsiloxy)-androst-5-ene-17 beta-yl acetate (1). The deuterium introduction at C-7 was carried out by reductive deoxygenation of the 7-keto compound 3 with dichloroaluminum deuteride and that at C-2 beta and/or C-16 beta by controlled alkaline hydrolysis of 16-bromo-17-ketone 11 or 12 with NaOD in D2O and pyridine. [7,7-2H2]3 beta-Hydroxyandrost-5-en-17-one (6), obtained from compound 1 by a five-step sequence, was converted to compound 14 or 16 by an eight-step or seven-step sequence, respectively. The labeled steroids 14 and 16 are useful as internal standards for gas chromatography-mass spectrometry analysis of the endogenous levels.  相似文献   

6.
Epimeric 3alpha,7alpha,16- and 3alpha,7alpha,15-trihydroxy-5beta-cholan-24-oic acids and some related compounds were synthesized from chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), respectively. The key reaction involved one-step remote oxyfunctionalization of unactivated methine carbons at C-17 of CDCA and at C-14 of UDCA as their methyl ester-peracetate derivatives with dimethyldioxirane (DMDO). After dehydration of the resulting 17alpha- and 14alpha-hydroxy derivatives with POCl(3) or conc. H(2)SO(4), the respective Delta(16)- and Delta(14)-unsaturated products were subjected to hydration via hydroboration followed by oxidation to yield the 3,7,16- and 3,7,15-triketones, respectively. Stereoselective reduction of the respective triketones with tert-butylamine-borane complex afforded the epimeric 3alpha,7alpha,16- or 3alpha,7alpha,15-trihydroxy derivatives exclusively. A facile formation of the corresponding epsilon-lactones between the side chain carboxyl group at C-24 and the 16alpha- (or 16beta-) hydroxyl group in bile acids is also clarified.  相似文献   

7.
《Tetrahedron》1988,44(1):253-260
A 7-step sequence is described for the controlled removal of D-desosamine and L-oleandrose from oleandomycin to give the C3,C5-acetonide 2. A Cope elimination was first used to remove the NMe2 group of desosamine, 3 → 4. Treatment of 4 with hydroiodic acid gave the iodohydrin 12 with loss of oleandrose, which was followed by removal of the olefinic sugar by hydrolysis with dilute hydrochloric acid to give 14. Acetonide formation and regeneration of the C8 epoxide by mild base then gave 2. The conversion of the C8 epoxide of 4 to the glycols 5 and 6, the enone 7, and the phenylsulphide 8 is also described.  相似文献   

8.
The cellobiose-derived dialkynes 14 and 15 were prepared by glycosidation of the acceptor 9 with the thioglycosides 12 (82%) and 13 (85%), respectively. The acceptor 9 was prepared from the known alcohol 2 via the lactone 7 in five steps (48% overall), and the donors 12 and 13 were prepared from the alkynylated anhydroglucose derivative 10 (60% overall). Acetolytic debenzylation of 14 and 15 (→ 16 and 17 , resp.) followed by deacylation of 16 yielded 60% of the cellobiose-derived dialkyne 18 . Deacylation of 14 (→ 19 ), methoxymethylation (→ 20 ) and trimethylgermylation led to the orthogonally protected dialkyne 21 (69% overall). Protodesilylation of 21 with K2CO3/MeOH gave 22 (90%), while the Me3Ge group was selectively removed with CuBr (19 mol-%) in THF/MeOH to give 20 (95%). Treatment of 21 with aqueous HCl solution led to 19 (80%). Bromodegermylation of 21 (NBS/AgOOCCF3) led to a mixture of 23 (85%) and 24 (11%). Similar conditions using CuBr instead of AgOOCCF3 gave exclusively the bromoalkyne 23 (93%). The temperature dependence of the δ values of the OH resonances of 18 in (D6)DMSO evidence a strong intramolecular H-bond between C(5′)? O…?HO? C(5).  相似文献   

9.
An ion formed by loss of 56 mass units from the molecular ion is often seen in mass spectra of trimethylsilyl ethers of C19 and C21 steroids having a 3β-hydroxy-Δ5 structure and an oxo group at C-17 or C-20. The nature of this fragment was investigated by the use of perdeuteriotrimethylsilyl ether derivatives and of [4-14C], [3-18O], [4,4-2H2] and [2,2,4,4-2H] labelled derivatives of 3β-hydroxy-5-androsten-17-one and 3β-hydroxy-5-pregnen-20-one. Evidence is presented to show that the neutral fragment of mass 56 is composed of carbon atoms 1, 2 and 3, the oxygen at C-3 and four hydrogen atoms. During the fragmentation process, the trimethylsilyl group and one of the hydrogens at C-2 are transferred to the fragment that carries the charge.  相似文献   

10.
A facile anionic cyclization approach toward stereocontrolled synthesis of the hexahydrobenzofuran subunit 3 of avermectin is described. As a model study, treatment of iodo compound 7 with n-BuLi at -100 degrees C effected metal-halogen exchange and subsequent anionic cyclization to afford perhydrobenzofuranone 8. For the total synthesis of subunit 3, compound 9 was dihydroxylated to give diol 10. Protection of the hydroxyl groups of diol 10 gave compound 11. Ketone 11 was then converted into the required enone 12 using Saegusa's protocol. On iodination followed by Luche reduction, enone 12 yielded alpha-iodo allylic alcohol 14, which on alkylation afforded ether 15. Conversion of the ester unit of 15 into a Weinreb amide group followed by anionic cyclization gave enone 17. 1,4-Addition of (MeOCH(2))(2)CuCNLi(2) to enone 17 followed by cleavage of the acetal unit afforded ketone 19. Preferential acetylation of the secondary alcoholic function of 19 afforded compound 20. The stereochemistry of 20 is confirmed by single-crystal X-ray analysis. Elimination of HOAc from 20 gave the crucial olefin 21. Hydrolysis of the acetate unit of 21 followed by protection of the resulting alcoholic function yielded tert-butyldimethylsilyl ether 23. Introduction of a hydroxyl group at the ring junction of 23, using Davis's procedure, finally afforded the hexahydrobenzofuran subunit 3.  相似文献   

11.
1-Hydroxypyrazolo[3,4-c]quinoline (22), 1-hydroxypyrazolo[4, 3-c]quinoline (21), 1-hydroxypyrazolo[3,4-c]isoquinoline (20), and 1-hydroxypyrazolo[4,3-c]isoquinoline (19) were prepared from 1-benzyloxypyrazole (6), establishing the pyridine B-ring in the terminal step. The pyridine ring of pyrazoloquinolines 14 and 18 was formed via cyclization of a formyl group at C-4 or C-5 and an amino group of a 2-aminophenyl substituent at C-5 or C-4 in 1-benzyloxypyrazole. The pyridine ring of pyrazoloisoquinolines 5 and 9 was created via cyclization of a formyl group in a 2-formylphenyl substituent at C-4 or C-5 with an iminophosphorane group installed at C-5 or C-4 of 1-benzyloxypyrazole by lithiation followed by reaction with tosyl azide and then with tributylphoshine utilizing the Staudinger/aza-Wittig protocol. The 2-aminophenyl and the 2-formylphenyl substituent were introduced at C-5 or C-4 by regioselective metalation followed by transmetalation to the pyrazolylzinc halide and subsequent palladium-catalyzed cross-coupling with 2-iodoaniline or 2-bromobenzaldehyde. The order of reactions and use of protecting groups in the individual sequences have been optimized. The 1-benzyloxy-substituted pyrazoloquinolines and isoquinolines thus obtained were debenzylated by strong acid to the corresponding 1-hydroxy-substituted pyrazoloquinolines and isoquinolines 19-22.  相似文献   

12.
20, 21-Aziridine Steroids: Reaction of Derivatives of the Oximes of 5-Pregnen-20-one, 9β, 10α-5-Pregnen-20-one and 9β, 10α-5,7-Pregnadiene-20-one with Lithium Aluminium Hydride, and of 3β-Hydroxy-5-pregnen-20-one Oxime with Grignard Reagents. Reduction of 3β-hydroxy-5-pregnen-20-one oxime ( 2 ) with LiAlH4 in tetrahydrofuran yielded 20α-amino-5-pregnen-3β-ol ( 1 ), 20β-amino-5-pregnen-3β-ol ( 3 ), 20β, 21-imino-5-pregnen-3β-ol ( 6 ) and 20β, 21-imino-5-pregnen-3β-ol ( 9 ). The aziridines 6 and 9 were separated via the acetyl derivatives 7 and 10 . The reaction of 6 and 9 with CS2 gave 5-(3β-hydroxy-5-androsten-17β-yl)-thiazolidine-2-thione ( 8 ). Treatment of the 20-oximes 12 and 15 of the corresponding 9β,10α(retro)-pregnane derivatives with LiAlH4 gave the aziridines 13 and 16 , respectively. Their deamination led to the diene 14 and triene 17 , respectively. Reduction of isobutyl methyl ketone-oxime with LiAlH4 in tetrahydrofuran yielded 2-amino-4-methyl-pentane ( 19 ) as main product, 1, 2-imino-4-methyl-pentane ( 22 ) as second product and the epimeric 2,3-imino-4-methyl-pentanes 20 and 21 as minor products. – 3β-Hydroxy-5-pregnen-20-one oxime ( 2 ) was transformed by methylmagnesium iodide in toluene to 20α, 21-imino-20-methyl-5-pregnen-3β-ol ( 23 ) and 20β, 21-imino-20-methyl-5-pregnen-3β-ol ( 26 ). Acetylation of these aziridines was accompanied by elimination reactions leading to 3β-acetoxy-20-methylidene-21-N-acetylamino-5-pregnene ( 30 ) and 3β-acetoxy-20-methyl-21-N-acetylamino-5,17-pregnadiene ( 32 ). The reaction of oxime 2 with ethylmagnesium bromide in toluene gave 20α, 21-imino-20-ethyl-5-pregnen-3β-ol ( 24 ) and 20α,21-imino-20-ethyl-5-pregnen-3β-ol ( 27 ). Acetylation of 24 and 27 led to 3β-acetoxy-20-ethylidene-21-N-acetylamino-5-pregnene ( 31 ), 3β-acetoxy-20-ethyl-21-N-acetylamino-5,17-pregnadiene 33 and 3β, 20-diacetoxy-20-ethyl-21-N-acetylamino-5-pregnene ( 37 ). With phenylmagnesium bromide in toluene the oxime 2 was transformed to 20β, 21-imino-20-phenyl-5-pregnen-3β-ol ( 25 ) and 20β,21-imino-20-phenyl-5-pregnen-3β-ol ( 28 ). Acetylation of 25 and 28 yielded 3β-acetoxy-20-phenyl-21-N-acetylamino-5, 17-pregnadiene ( 34 ) and 3β,20-diacetoxy-20-phenyl-21-N-acetylamino-5-pregnene ( 39 ). LiAlH4-reduction of 39 gave 3β, 20-dihydroxy-20-phenyl-21-N-ethylamino-5-pregnene ( 41 ). – The 20, 21-aziridines are stable to LiAlH4. Consequently they are no intermediates in the formation of the 20-amino derivatives obtained from the oxime 2 .  相似文献   

13.
An efficient strategy for the synthesis of 5-hydroxy substituted isofagomine analogues and , having both -CH2OH/CH3 and -OH functionality at the C-5 position, and evaluation of their inhibitory potency is reported. The synthetic methodology involves the aldol-Cannizzaro reaction of easily available alpha-d-xylopentodialdose followed by hydrogenolysis to afford the triol . Selective amidation of the alpha- and beta-hydroxymethyl group at C-4, deprotection of the 1,2-acetonide group and hydrogenation gave the target molecules, which were found to be potent against beta-glycosidases with IC50 values in the micro molar range. Compound showed excellent potency against glycosidases and human salivary amylase.  相似文献   

14.
D-Glucose was converted to synthetic equivalent of meso-pentodialdose, namely 3-C-(1'-aminoethyl)-alpha-d-ribo-pentodialdo-1,4-furanose 10 that gives an easy access to manipulate the aldehyde functionalities on either sides to get enantiomeric pair of 3. Thus, reduction of C5-aldehyde followed by hydrolysis of 1,2-acetonide functionality and reductive aminocyclization with C1-aldehyde afforded gamma-1,2-dihydroxyethyl piperidine iminosugar 3. On the other hand, first reductive aminocyclization with C5-aldehyde gave piperidine ring skeleton 12 that on removal of 1,2-acetonide and reduction of C1-aldehyde gave ent-3 while chopping of C1-aldehyde in 12 and reduction afforded gamma-hydroxymethyl piperidine iminosugar 4.  相似文献   

15.
1,3‐Bis‐(arylidene)thiourea derivatives ( 11a‐c ) were prepared by reacting thiourea ( 9 ) with bezaldehyde, p‐chlorobenzaldehyde or p‐anisaldehyde ( 10a‐c ) respectively. Further reaction of ( 11b ) with acetyl acetone, ethyl acetoacetate, malononitrile and acetic anhydride gave tetrahydropyrimidine‐2‐thiones ( 12‐14 ) and 1,3‐diacetyl thiourea ( 15 ). Compound ( 11b ) reacted with chloroacetyl chloride to give the corresponding pyrimidin‐4‐one derivative ( 16 ). Reaction of ( 12‐14 ) with acetic acid in aqueous sodium nitrite yielded the corresponding oxime derivatives ( 17‐19 ). The triazole ( 20 ) was achieved via refluxing of ( 19 ) in dimethylformamide. Reaction of ( 16 ) with mercaptoacetyl chloride gave the sulfanyl‐acetic acid ( 21 ) which afforded the dihydrazinyl ( 22 ) up on treatment with hydrazine hydrate. Newly synthesized compounds ware characterized by elemental analyses and spectral data (IR, 1H‐NMR, 13C‐NMR and mass spectra). The investigated compounds were screened for their cytotoxicity, i.e. compounds 19 , 20 and 22 exhibited highly potential antitumor activity.  相似文献   

16.
A practical synthesis of 3'-O-benzyl-2'-deoxy-5-trifluoromethyluridine (1), a candidate antitumor agent for clinical testing, was developed from 2'-deoxy-5-iodouridine (3). Benzylation of 2'-deoxy-5-iodo-5'-O-trityluridine (14) with benzyl bromide and sodium hydride in tetrahydrofuran gave the 3'-O-derivative (16). Benzoylation of 16 afforded the N3-benzoyl derivative (17). Coupling of 17 with trifluoromethylcopper, prepared from bromotrifluoromethane and copper powder in the presence of 4-dimethylaminopyridine, gave the 5-trifluoromethyl derivative (19) minimally contaminated with the 5-pentafluoroethyl compound. Deprotection of 19 furnished 1.  相似文献   

17.
The structural elucidation of eleven new related polyoxypregnane glycosides, gymnepregosides G (1), H (2), I (3), J (4), K (5), L (6), M (7), N (8), O (9), P (10) and Q (11), from the roots of Gymnema alternifolium (Asclepiadaceae) was achieved by a detailed study of 1H- and 13C-NMR spectral data and chemical means. The results obtained for new compounds, 1-11, show that they are (20S)-pregn-6-ene-3 beta,5 alpha,8 beta,12 beta,14 beta,17 beta,20-heptaol 3-O-glycosides, and all the sugars at C-3 are beta(i-->4)-linked. Some of them possess benzoyl, (E)- and (Z)-cin-namoyl, and tigloyl residues as the ester linkages located at C-12 and/or C-20 of the aglycone.  相似文献   

18.
On the Synthesis of Sulfonated Derivatives of 4- and 5-Aminoindan Baking the hydrogensulfate salt of 4-aminoindan (1) and 5-aminoindan (2) led, respectively, to 4-aminoindan-7-sulfonic acid (3) and 5-aminoindan-6-sulfonic acid (4). Acid 4 was also obtained by direct sulfonation of 2. 4-Aminoindan-6-sulfonic acid (5) and 6-aminoindan-4-sulfonic acid (6) were prepared by sulfonation of 4-nitroindan (7) and 5-nitroindan (9) , respectively, to 4-nitroindan-6-sulfonic acid (8) and 6-nitroindan-4-sulfonic acid (10) , followed by a Béchamp-reduction. Treatment of 1 with amidosulfuric acid gave 3 , whereas the same reaction with 2 led to a mixture of 4 and 5-aminoindan-4-sulfonic acid (11). Independent synthesis of 11 was achieved by the following sequence of reactions: sulfur dioxide treatment of the diazonium chloride derived from 4-amino-5-nitrodan (13) gave 5-nitroindan-4-sulfonyl chloride (14) ; hydrolysis to 5-nitroindan-4-sulfonic acid (15) , and final reduction. The 4-aminoindan-5-sulfonic acid (16) was synthesized by treatment of 4-amino-7-bromoindan (18) with amidosulfuric acid to give 4-amino-7-bromoindan-5-sulfonic acid (19) followed by hydrogenolysis. Sulfonation of 4-acetyl-amino-7-bromoindan (17) with oleum followed by hydrolysis led to 7-amino-4-bromoindan-5-sulfonic acid (20) , the structure of which was confirmed by reductive dehalogenation to 5 .  相似文献   

19.
An efficient synthesis of monoacylated 1alpha,25-dihydroxyvitamin D3 A-ring precursors 15, 16, 18, and 19 has been described through an enzymatic hydrolysis process. Candida antarctica A lipase (CAL-A) hydrolyzes the C-5 acetate ester in trans stereoisomers 9 and 13, with complete and high selectivity, respectively. In the case of cis isomers 11 and 14, Chromobacterium viscosum lipase (CVL) is the enzyme of choice, exhibiting opposite selectivity for these two enantiomers. This lipase selectively catalyzes the hydrolysis at the C-3 acetate in diester 11 and at C-5 position in diester 14. It is noteworthy that through a hydrolysis reaction CAL-A and CVL allow the synthesis of the four A-ring monoacetylated precursors of 1alpha,25-dihydroxyvitamin D3, precursors which are complementary to those obtained by the enzymatic acylation process. In addition, with excellent yield CVL selectively hydrolyzes the C-3 chloroacetate ester instead of the C-5 acetate in diester 22, a key intermediate in the synthesis of new A-ring modified 1alpha,25-dihydroxyvitamin D3 analogues.  相似文献   

20.
2-Aminothiophene 3 was achieved through the one-pot multicomponent reaction of cycloheptanone, cyanoacetamide, elemental sulfur, and morpholine in ethanol. Diazotization of 2-aminothiophene 3 with NaNO2/HCl gave the corresponding diazonium salt 4 , that combined with the appropriate active methylene components; 5a , 5b , 7 , 11 , 13 , 16 , 18 , 21 , 9 , 19 , 22a , and 22b in pyridine (AcONa/EtOH) to form the corresponding hydrazones 6a , 6b , 8 , 10 , 14 , 15 , 17 , 20 , 23 , 24 , 25a , and 25b , respectively. Heating of compound 8 with malononitrile 9 in ethanol gave the thiazole 10 . Treatment of compound 10 , 25a , and 25b with hydrazine hydrate achieve the pyrazoles 12 , 27a , and 27b , respectively. Hydrazinolysis of compound 14 with hydrazine hydrate, followed by condensation of the obtained hydrazide 15 with acetylacetone 19 gave the pyrazole 20 . The recently orchestrated thiophenes were assessed for their cytotoxic action. The result revealed that compound 12 indicated comparable and better action towards HePG2, HCT-116, MCF-7, and PC3 cancer cell lines than Doxorubicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号