首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
Goze C  Ulrich G  Ziessel R 《Organic letters》2006,8(20):4445-4448
Novel monomeric and dimeric dialkynyl borondipyrromethene dyes (E-Bodipy) have been prepared in two different ways, providing systems in which the boron center is attached to either two similar or two dissimilar acetylenic units incorporating chromophores such as pyrene or anthracene. Both families exhibit interesting fluorescence and redox properties in which almost quantitative intramolecular energy transfer occurs.  相似文献   

2.
Several borondipyrromethene (Bodipy) dyes bearing an aryl nucleus linked directly to the boron center have been prepared under mild conditions. The choice of Grignard or lithio organo-metallic reagents allows the isolation of B(F)(aryl) or B(aryl)2 derivatives; where aryl refers to phenyl, anisyl, naphthyl, or pyrenyl fragments. A single crystal, X-ray structure determination for the bis-anisyl compound shows that the sp3 hybridized boron center remains pseudo-tetrahedral and that the B-C bond distances are 1.615 and 1.636 A. All compounds are electrode active but replacement of the fluorine atoms by aryl fragments renders the Bodipy unit more easily oxidized by 100 mV in the B(F)(aryl) and 180 mV in the B(aryl)2 compounds whereas reduction is made more difficult by a comparable amount. Strong fluorescence is observed from the Bodipy fluorophore present in each of the new dyes, with the radiative rate constant being independent of the nature of the aryl substituent. The fluorescence quantum yields are solvent dependent and, at least in some cases (aryl = anisyl or pyrenyl), nonradiative decay from the first-excited singlet state is strongly activated. There is no indication, however, for population of a charge-transfer state, in which the aryl substituent acts as donor and the Bodipy fragment functions as acceptor, that is strongly coupled to the ground state. Instead, it is conjectured that nonradiative decay involves a conformational change driven by the solvophobic effect. Thus, the rate of nonradiative decay in any given solvent increases with increasing surface accessibility (or molar volume) of the aryl substituent. Intramolecular energy transfer from pyrene or naphthalene residues to Bodipy is quantitative.  相似文献   

3.
Boron dipyrromethene dyes (Bodipy) bearing a meso-phenyl substituent carrying a variety of functional groups can be prepared under mild conditions. A single-crystal X-ray structure determination for the 3,5-dinitrophenyl compound shows the phenyl ring to be almost orthogonal (dihedral angle 84 degrees) to the plane of the Bodipy core, with one nitro group almost coplanar with the ring and the other tilted by approximately 21 degrees. Nitro substituents at the 3-, 4-, and 5- positions of the phenyl group are readily reduced to the corresponding amino groups and then converted to isocyanato, isothiocyanato, urea, thiourea, and some polyimine derivatives, the last providing additional functionality (phenazine and pyridylindole units) suitable for chelation of metal ions. All compounds are redox active, the electron-transfer processes being assigned on the basis of comparisons with model compounds. Their fluorescence properties are sensitive to the phenyl group substituents. The Bodipy unit excited state appears to be a strong reductant (Eo approximately -1.4 V) and a modest oxidant (Eo approximately +1.0 V). Quenching processes in the nitro and phenazine derivatives appear to involve intramolecular photoinduced electron transfer.  相似文献   

4.
A general method for the synthesis of difluorobora-diisoindolomethene dyes with phenyl, p-anisole, or ethyl-thiophene substituents has been developed. The nature of the substituents allows modulation of the fluorescence from 650 to 780 nm. Replacement of the fluoro ligands by ethynyl-aryl or ethyl residues is facile using Grignard reagents. Several X-ray molecular structures have been determined, allowing establishment of structure-fluorescence relationships. When the steric crowding around the boron center is severe, the aromatic substituents α to the diisoindolomethene nitrogens are twisted out of coplanarity, and hypsochromic shifts are observed in the absorption and emission spectra. This shift reached 91 nm with ethyl substituents compared to fluoro groups. When ethynyl linkers are used, the core remains flat, and a bathochromic shift is observed. All the fluorophores exhibit relatively high quantum yields for emitters in the 650-800 nm region. When perylene or pyrene residues are connected to the dyes, almost quantitative energy transfer from them to the dye core occurs, providing large virtual Stokes shifts spanning from 8000 to 13,000 cm(-1) depending on the nature of the dye. All the dyes are redox active, providing the Bodipy radical cation and anion in a reversible manner. Stepwise reduction or oxidation to the dication and dianion is feasible at higher potentials. We contend that the present work paves the way for the development of a new generation of stable, functionalized luminophores for bioanalytical applications.  相似文献   

5.
Redox‐active anthraquinone based polymers are synthesized by the introduction of a polymerizable vinyl and ethynyl group, respectively, resulting in redox‐active monomers, which electrochemical behaviors are tailored by the modification of the keto groups to N‐cyanoimine moieties. These monomers can be polymerized by free radical polymerization and Rh‐catalyzed polymerization methods, respectively. The resulting polymers are obtained in molar masses (Mn) of 4,400 to 16,800 g mol?1 as well as high yields of up to 97%. The monomers and polymers are furthermore electrochemically characterized by cyclic voltammetry. The monomers exhibit two one‐electron redox reactions at about ?0.6 and ?1.0 V versus Fc+/Fc. The N‐cyanoimine units are, however, partially hydrolyzed during the polymerization step or during the electrochemical measurements and degenerate to carbonyl groups, resulting in a new reduction signal at ?1.26 V versus Fc+/Fc. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1998–2003  相似文献   

6.
Brothers PJ 《Inorganic chemistry》2011,50(24):12374-12386
Complexes of boron with ligands containing pyrrolyl motifs are surveyed. The ligands range from simple pyrrolyl groups to dipyrroles and linear terpyrroles. Macrocyclic ligands include tripyrroles, which encompass subphthalocyanines, subporphyrins, subtriazaporphyrins, and subtribenzoporphyins, the familiar tetrapyrroles porphyrin and corrole but also N-confused and -fused porphyrins, and expanded porphyrins containing up to eight pyrroles. The role of boron in these compounds depends on the nature of the ligand. Boron acts as a Lewis acid center in simple boron pyrrolyl compounds, and as a structure-directing and templating agent in the cyclic terpyrroles and some of the expanded porphyrins. The difluorboron dipyrrins are well-known as fluorescent dyes. Boron porphyrins and corroles are unusual in containing two coordinated boron atoms rather than the single coordinated atom usually occurring in these ligands, and the proximity of two boron atoms at close quarters in the ligand cavities gives rise to some unusual reaction and redox chemistry. The survey is organized by the number of pyrrole moieties occurring in the ligand and focuses on new and unique chemistry observed for the complexes.  相似文献   

7.
The engineering of photoactive arrays built from a flat, functionalized triazatruxene (TAT) platform is described. The primary synthetic strategy involved the step by step connection of one, two or three bis(thienyl)diketopyrrolopyrrole (DPP) modules. Subsequent bromination of the pendent thiophene ring was not selective and provided a mixture of regioisomers. However, selective grafting of boron dipyrromethene (Bodipy) units via Pd-catalysed cross couplings enabled the construction of TAT/DPP/Bodipy arrays. As well, direct coupling of two green F-Bodipy units to dibromoTAT provided a substrate suitable for reaction with hydroxyl-propargyl-substituted red Bodipy dyes to give ready access to O-Bodipy linked multichromophoric systems. All the new dyes displayed strong absorption in the near-UV and visible region of the solar spectra (400–750 nm), with intramolecular cascade energy transfer enabling photon concentration and fluorescence at approximately 740 nm.  相似文献   

8.
A series of new compounds in which various Bodipy dyes are grafted logically on triptycene rigid structures are synthesized and characterized, and their absorption spectra and photophysical properties are studied, also by pump‐probe transient absorption spectroscopy. The studied compounds are: the mono‐Bodipy species TA, TB, and TC (where A, B, and C identify different Bodipy subunits absorbing and emitting at different wavelengths), the multichromophore species TA3, which bears three identical A subunits, and the three multichromophoric species TAB, TBC, and TABC, all of them containing at least two different types of Bodipy subunits. The triptycene moiety plays the role of a rigid scaffold, keeping the various dyes at predetermined distances and allowing for a three‐dimensional structural arrangement of the multichromophoric species. The absorption spectra of the multichromophoric Bodipy species are essentially additive, indicating that negligible inter‐chromophoric interaction takes place at the ground state. Luminescence properties and transient absorption spectroscopy indicate that a very fast (on the picosecond time scale) and efficient photoinduced energy transfer occurs in all the multi‐Bodipy species, with the lower‐energy Bodipy subunits of each multi‐Bodipy compounds playing the role of an electronic energy collector. In TAB, an energy transfer from the A‐type Bodipy subunit to the B‐type one takes place with a rate constant of 1.6×1010 s?1, whereas in TBC an energy transfer from the B‐type Bodipy subunit to the C‐type subunit is bi‐exponential, exhibiting rate constants of 1.7×1011 and 1.9×1010 s?1; the possible presence of different conformers with different donor–acceptor distances in this bichromophoric species is proposed to cause the bi‐exponential energy‐transfer process. Interpretation of the intricate energy‐transfer pathways occurring in TABC is made with the help of the processes identified in the bichromophoric compounds. In all cases, the measured energy‐transfer rate constants agree with a Förster mechanism for the energy‐transfer processes.  相似文献   

9.
Photophysical properties have been recorded for a small series of covalently linked, symmetrical dimers formed around boron dipyrromethene (Bodipy) dyes. Within the series, a control dimer is unable to adopt a cofacial arrangement because of steric factors, while a second dimer possesses sufficient internal flexibility to form the cofacial geometry but with little overlap of the Bodipy units. The other three members of the series take up a cofacial arrangement with varying bite angles between the planes of the two Bodipy units. Fluorescence quantum yields and excited-state lifetimes indicate differing extents of electronic interaction between the two Bodipy head-groups, but only the compound with the smallest bite angle exhibits excimer emission in solution under ambient conditions. Time-resolved fluorescence studies show dual-exponential decay kinetics in each case, while temperature-dependent emission studies reveal reversible coupling between monomer and lower-energy excimer states. The latter is weakly fluorescent, at best, and is seen clearly only for dimers having small bite angles. The application of high pressure to dilute solutions of these dimers promotes excimer formation in certain cases and leads to loss of monomer-like fluorescence. Under high pressure, excimer emission is more evident, and the overall results can be discussed in terms of subtle structural rearrangements that favor excimer formation.  相似文献   

10.
11.
IntroductionAllsB.O,, is a refractory compound with the melting point of 1 713 K. It has a low density of 2. 94 g/cm' and tends to form a needle--shaped crystal. These characteristics lead to itspotential application in reinforced plastics or metal alloys['j. The investigationL'] in the crystalstructure Of Al,SB,O,, by X-ray study has reve.aled that the material has a 10Al,O,. BZO3type structure. This structure contains AIO.--tetrahedra, AIO,-octahedra, five-oxygen-coordinated Al ato…  相似文献   

12.
A novel and general strategy for the immobilisation of functional objects onto electrodes is described. The concept is based on the addition of two pendant ethynyl groups onto a bis(pyridyl)amine derivative, which acts as a molecular platform. This platform is pre-functionalised with an N(3)-tagged object of interest by Huisgen cycloaddition to one of the ethynyl groups in biphasic conditions. Hence, when complexed by Cu(II) , this molecular-object holder can be immobilised, by a "self-induced electroclick", through the second ethynyl group onto N(3)-alkanethiol self-assembled monolayers on a gold electrode. Two different functional groups, a redox innocent ((CH(2))(3)-Ph) and an electrochemical probe (ferrocene), were immobilised by following this strategy. The in situ electrochemical grafting showed, for both systems, that the kinetics of immobilisation is fast. The voltammetric characterisation of the surface-tagged functionalised copper complexes indicated that a good surface coverage was achieved and that a moderately fast electron-transfer reaction occurs. Remarkably, in the case of the redox-active ferrocenyl-immobilised system, the electrochemical response highlighted the involvement of the copper ion of the platform in the kinetics of the electron transfer to the ferrocene moiety. This platform is a promising candidate for applications in surface addressing in areas as diverse as biology and materials.  相似文献   

13.
Pentacoordinate and tetracoordinate carbon and boron compounds (27, 38, 50-52, 56-61) bearing an anthracene skeleton with two oxygen or nitrogen atoms at the 1,8-positions were synthesized by the use of four newly synthesized tridentate ligand precursors. Several carbon and boron compounds were characterized by X-ray crystallographic analysis, showing that compounds 27, 56-59 bearing an oxygen-donating anthracene skeleton had a trigonal bipyramidal (TBP) pentacoordinate structure with relatively long apical distances (ca. 2.38-2.46 A). Despite the relatively long apical distances, DFT calculation of carbon species 27 and boron species 56 and experimental accurate X-ray electron density distribution analysis of 56 supported the existence of the apical hypervalent bond even though the nature of the hypervalent interaction between the central carbon (or boron) and the donating oxygen atom was relatively weak and ionic. On the other hand, X-ray analysis of compounds 50-52 bearing a nitrogen-donating anthracene skeleton showed unsymmetrical tetracoordinate carbon or boron atom with coordination by only one of the two nitrogen-donating groups. It is interesting to note that, with an oxygen-donating skeleton, the compound 61 having two chlorine atoms on the central boron atom showed a tetracoordinate structure, although the corresponding compound 60 with two fluorine atoms showed a pentacoordinate structure. The B-O distances (av 2.29 A) in 60 were relatively short in comparison with those (av 2.44 A) in 59 having two methoxy groups on the central boron atom, indicating that the B-O interaction became stronger due to the electron-withdrawing nature of the fluorine atoms.  相似文献   

14.
While the vast majority of inorganic chemistry involves electron donation from main-group atoms to metals, an intriguing yet flip-side exists: where Lewis-basic metals donate electron density to Lewis-acidic main-group atoms (most often boron). These so-called "Z-type" ligands, along with other less clear-cut complexes, are examples of this metal-ligand role reversal. This perspective article offers an introduction to metal-to-boron dative bonding, and attempts to correlate spectroscopic and structural data from the complexes.  相似文献   

15.
Two series of multi-cascade scaffolds bearing a boradiazaindacene (yellow dye) or a boradibenzopyrromethene (green dye) as the final energy acceptor have been synthesized. Each scaffold contains one, two or three alkynylaryl energy donors (such as pyrene D1, perylene D2, and fluorene D3) linked to the boron center. Palladium-catalyzed cross-coupling of dihalogenated Bodipy starting material enabled the step-by-step construction of the different modules. In all cases, selective irradiation in each absorbing subunit resulted in efficient energy transfer over 25 Å to the Bodipy units.  相似文献   

16.
The synthesis of the novel unprotected carboranyl C-glycosides 2 and 20-24 starting from ethynyl C-glycosides 1, 5-8, 10, and 13 is described. The new compounds are highly water-soluble and display only a very low cytotoxicity, which makes them promising candidates for use in boron neutron capture therapy for the treatment of cancer.  相似文献   

17.
Chiral pyrrolidinyl units are important building blocks in biologically active natural products and drugs, and the development of efficient methods for the synthesis of diverse structured pyrrolidine derivatives is of great importance. Meanwhile, incorporating fluorine containing groups into small molecules often changes their activities to a great extent due to the special physicochemical properties of fluorine atoms. Herein, we report an efficient route to obtain enantioenriched 3,3-difluoro- and 3,3,4-trifluoropyrrolidinyl derivatives by Cu(i)-catalysed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active 1,1-difluoro- and 1,1,2-trifluorostyrenes. A series of new fluorinated pyrrolidines have been prepared in high yields (up to 96%) and with excellent stereoselectivities (up to >20 : 1 dr and 97% ee), and these unique structural blocks could be readily introduced into some natural compounds and pharmaceuticals. Additionally, antifungal activity investigation against four common plant fungi showed that some products possess general and high biological activities; comparison with the low antifungal activities of corresponding nonfluorinated compounds revealed that the fluorine atoms at the pyrrolidinyl rings play a crucial role in the antifungal activity.

Chiral fluoropyrrolidines were synthesized by Cu(i)-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides with less active fluorinated styrenes, with broad substrate scope and high yield, stereoselectivity and biological activity.  相似文献   

18.
Three [2]catenanes and three [3]catenanes incorporating one or two pi-electron-rich macrocyclic polyethers and one pi-electron-deficient polycationic cyclophane have been synthesized in yields ranging from 4 to 38%. The pi-electron-rich macrocyclic components possess either two 1,4-dioxybenzene or two 1.5-dioxynaphthalene recognition sites. The pi-electron-deficient cyclophane components incorporate two bipyridinium and either one or two dialkylammonium recognition sites. The template-directed syntheses of these catenanes rely on i) pi...pi stacking interactions between the dioxyarene and bipyridinium recognition sites, ii) C-H...O hydrogen bonds between some of the bipyridinium hydrogen atoms and some of the polyether oxygen atoms, and iii) C-H...pi interactions between some of the dioxyarene hydrogen atoms and the aromatic spacers separating the bipyridinium units. The six catenanes were characterized by mass spectrometry and by both 1H and 13C NMR spectroscopy. The absorption spectra and the electrochemical properties of the catenanes have been investigated and compared with those exhibited by the component macrocycles and by related known catenanes. Broad and weak absorption bands in the visible region, originating from charge-transfer (CT) interactions between electron-donor and electron-acceptor units, have been observed. Such charge-transfer interactions are responsible for the quenching of the potentially fluorescent excited states of the aromatic units of the macrocyclic polyether components. The redox behavior of these novel compounds has been investigated and correlations among the observed redox potentials are illustrated and discussed. The catenanes undergo co-conformational switching upon one-electron reduction of the two bipyridinium units. One of them--in its reduced form--can be also switched by acid/base inputs and exhibits AND logic behavior. The co-conformational rearrangements induced by the redox and acid/base stimulations lend themselves to exploitation in the development of molecular-level machines and logic gates.  相似文献   

19.
Three new molecular dyads, comprising a bora-3a,4a-diaza-s-indacene (Bodipy) dye linked to two aromatic polycycles via the boron center, have been synthesized and fully characterized. The polycyclic compounds are either pyrene or perylene, or a mixture of both. Whereas the absorption spectral profiles contain important contributions from each of the subunits, fluorescence occurs exclusively from the Bodipy fragment. Intramolecular excitation energy transfer is extremely efficient in each case, even though spectral overlap integrals for the pyrene-based system are modest. Although these polycycles are sterically congested, molecular dynamics simulations indicate that they are in dynamic motion, and this hinders proper computation of the orientation factors for F?rster-type energy transfer. These new dyes, especially the mixed polycycle system, greatly extend the range of excitation wavelengths that can be used for fluorescence microscopy.  相似文献   

20.
The large rigid dianion fluoflavinate, C(14)H(8)N(4)(2)(-), consisting of four fused and planar six-membered rings with four nitrogen donor atoms, has been used to link two metal-to-metal bonded and redox-active Mo(2)(n)()(+) units which are each locally bridged by three additional groups, collectively denoted [Mo(2)]. In 1, the [Mo(2)] units are Mo(2)(DAniF)(3) (DAniF = N,N'-di-p-anisylformamidinate), and in 5, they are trans-Mo(2)(DAniF)(2)(O(2)CCH(3)) groups. These [Mo(2)](fluoflavinate)[Mo(2)] compounds show three reversible one-electron oxidation steps, one more than all other [Mo(2)](linker)[Mo(2)] species known to date. The first two redox processes are metal-based, and the third one has been assigned to a ligand oxidation by comparison to that of paddlewheel compound 4 which contains only one dimolybdenum unit with a monoanionic fluoflavinate ligand. Chemical oxidations of 1 produce the singly- and doubly-oxidized species 2 and 3, respectively. All compounds have been characterized by X-ray crystallography and, as appropriate, by various techniques such as NMR, EPR, near-IR, and UV-vis. The fluoflavinate ligand strongly mediates electronic communication between the dimetal units, and the mixed valence species 2 can be described as electronically delocalized. Calculations at the DFT level using a variety of functionals support such an assignment and indicate that a strong transition in the NIR for the singly oxidized species can be assigned to the HOMO-1 to SOMO transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号