首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive investigation of rheological properties of linear and branched styrene-acrylonitrile copolymer specimens with similar molecular characteristics has been carried out. During the steady-state shear flow, the viscosity properties of both specimens are described by the Cross equation. In this case, the branched copolymer is characterized by a higher viscosity and shear thinning degree as well as by substantially lower shear rate values corresponding to transition to the non-Newtonian flow region. The elasticity of the branched copolymer melt (estimated from the value of the first normal stress difference) is considerably higher than that of the linear. This is reflected on the characteristics of occurrence of unstable flow at high shear rates. Rougher extrudate surface distortions are characteristic for the branched copolymer, and the shear rate corresponding to their occurrence is noticeably lower than for the linear copolymer. The dynamic characteristics of the copolymers being compared also attest to a greater elasticity of the branched specimen. An investigation of the viscoelastic properties in a wide temperature range allowed constructing a generalized frequency dependence of dynamic moduli encompassing various regions of the relaxation states of the copolymer specimens. Continuous relaxation spectra were calculated by means of the Mellin transform. It is shown that relaxation phenomena caused by segmental mobility doesn’t depend on the presence of branchings, whereas branching of the chain has a substantial effect on translation mobility of the chain as a whole. Branching leads to a noticeable increase of transient elongation viscosity but has almost no effect of strain hardening of the melt.  相似文献   

2.
The dynamic rheological properties of three metallocene-based ethylene-butene copolymers were examined and were compared with those of some conventional ethylene-butene copolymers and of a low density polyethylene (LDPE). Compared with the conventional ethylene copolymers, the metallocene-based copolymers exhibit the following dynamic rheological features: (1) lower viscoelastic moduli and viscosity at small frequencies, but larger viscoelastic moduli and viscosity at large frequencies, thus a small shear thinning effect; (2) larger values of flow activation energy; (3) a relatively fast relaxation rate. These features are the results of simultaneous absence of high molecular weight tails and low molecular weight tails in the metallocene-based copolymers. The dynamic rheological properties of blends of various ethylene-butene copolymers with LDPE were also investigated. It is found that the addition of LDPE can raise the viscosity at low frequencies but lower the viscosity and elasticity at higher frequencies, and retard the relaxation rate of the metallocene-based ethylene copolymers. However, the improvement in rheological properties by LDPE varies with the polymer samples and there is no improvement for the conventional copolymer G.  相似文献   

3.
The relaxation properties of gradient polymer materials produced via a modified method are studied through dynamic mechanical analysis and through measurement and approximation of stress-relaxation curves in a wide temperature range under static conditions. The physicomechanical properties of polymer materials produced via the new method are substantially improved, and the range of properties is markedly widened. The investigated materials can possess any values of the elastic modulus, including those inherent in the region of transition from the glassy state to the rubbery state; moreover, they demonstrate a quasi-elastic behavior characteristic of glasses and rubbers.  相似文献   

4.
Two groups of copolymers were synthesized from high molecular weight polyacrylamides. One group of copolymers consisted of sulfonated, anionic copolymers (PAM-S) of acrylamide with the sodium salt of 2-acryloamido-2-methyl-1-propane sulfonic acid, and the other consisted of zwitterionic copolymers (PAM-Z) of acrylamide with a sulfobetaine methacrylate monomer. The shear rheology of aqueous solutions of the copolymers and their mixtures was studied experimentally. Solutions of both copolymers exhibit shear thinning behavior in the range of concentrations explored. Solutions of mixtures of two copolymers (PAM-Z and PAM-S) exhibited a slight viscosity synergy at high relative contents of PAM-S. Addition of a relatively high concentration of an electrolyte (0.3 M NaCl) induces decreases in viscosity due to coil contraction and eliminates the synergy of the mixtures. Mixtures of the zwitterionic copolymer and a cationic surfactant, cetyl trimethylammonium p-toluene sulfonate (CTAT), were also studied. These solutions exhibit a strong synergistic effect at low-shear rates when the surfactant forms wormlike micelles. In addition, oscillatory shear measurements demonstrate that PAM-Z/CTAT mixtures are significantly more elastic than CTAT solutions, which indicates that PAM-Z is effective in promoting micelle entanglements, as reflected by the increase in relaxation time with PAM-Z content.  相似文献   

5.
通过苯乙烯和丙烯酸单体的预组装再聚合的制备方法,在不改变共聚物浓度的前提下制备了共聚物胶束溶液和凝胶,探讨了引发剂(偶氮二异丁腈)浓度对生成的共聚物的聚集体结构以及分子结构的影响.利用核磁共振氢谱、扫描电子显微镜和透射电子显微镜等表征了共聚物的分子结构和聚集行为,此外,借助耗散粒子动力学方法模拟了该体系,辅助实验阐明了不同引发剂浓度下生成的共聚物聚集体结构及相对应的共聚物分子结构,在此基础上,利用动态机械热分析和流变学的表征技术,研究了共聚物胶束溶液和凝胶的流变特性.结果表明,在单体浓度不变的情况下,高引发剂浓度时该体系趋于形成平均嵌段长度较长的两嵌段共聚物,生成稳定的胶束溶液,而低引发剂浓度时趋于形成交替共聚物,得到物理凝胶,耗散粒子动力学模拟得到了与实验一致的结果.流变学表征发现胶束体系和凝胶体系均呈现剪切变稀行为,并确定了凝胶体系的凝胶点及恢复性.  相似文献   

6.
Styrene-butadiene copolymers of the S-B-S and S-B-S-B-S types, both unmodified and extended with paraffinic-naphthenic oil, were studied by dynamic mechanical spectroscopy and capillary rheometry. In the triblocks at low deformation rates, an increase in 1-vinylethylene unit content leads to an increase in complex dynamic viscosity |η*|. This may be explained by their different supermolecular structure with a higher proportion of long relaxation times. The pentablocks show a considerable effect of molecular parameters on their flow behaviour at low deformation rates. In all the systems, steady viscosity η shows no significant differences at higher shear rates. Obviously the supermolecular structure is disintegrated in these conditions and the effect of chemical structure is negligible. An expected decrease in viscosity in the whole range of deformation rates was observed with the oil-extended copolymer. The dependences of complex dynamic viscosity on angular frequency were compared with those of steady viscosity on shear rate but no unequivocal conclusion as regards the validity of the Cox-Merz rule could be reached.  相似文献   

7.
We present molecular dynamics simulations coupled with a dissipative particle dynamics thermostat to model and simulate the behavior of symmetric diblock copolymer/nanoparticle systems under simple shear flow. We consider two categories of nanoparticles, one with selective interactions toward one of the blocks of a model diblock copolymer and the other with nonselective interactions with both blocks. For the selective nanoparticles, we consider additional variants by changing the particle diameter and the particle-polymer interaction potential. The aim of our present study is to understand how the nanoparticles disperse in a block copolymer system under shear flow and how the presence of nanoparticles affects the rheology, structure, and flow behavior of block copolymer systems. We keep the volume fraction of nanoparticles low (0.1) to preserve lamellar morphology in the nanocomposite. Our results show that shear can have a pronounced effect on the location of nanoparticles in block copolymers and can therefore be used as another parameter to control nanocomposite self-assembly. In addition, we investigate the effect of nanoparticles on shear-induced lamellar transition from parallel to perpendicular orientation to further elucidate nanocomposite behavior under shear, which is an important tool to induce long-range order in self-assembling materials such as block copolymers.  相似文献   

8.
Orientation of amorphous polymers stretched at a temperature above their glass-transition temperature, is involved in thermoforming processing. The molecular processes controlling the orientation and chain relaxation of polymers have been investigated by infrared dichroism in a large series of materials: polystyrene, polymethylmethacrylate of various tacticity and its copolymers with styrene and acrylonitrile. Polystyrene with hydrogenated and deuterated blocks leads to information on the behavior of each block (central part, chain ends) and allows a quantitative comparison with the Doi-Edwards model for chain relaxation. In order to analyse the effect of polydispersity, blends of hydrogenated and deuerated polystyrene chains with various molecular weights have been studied. Short chains with molecular weights smaller than the molecular weight between entanglements, enhance the relaxation of long chains. Furthermore an anisotropic orientational coupling effect exists between a chain segment and its oriented surrounding. By comparing the orientation of polymers with different chemical structures, it results that they behave differently under temperature conditions where T - Tg = const, but they undergo identical relaxations when the experiments are performed at temperatures chosen in such a way that the monomer friction coefficients are identical. In copolymers of styrene and methylmethacrylate, the two monomer units have different orientations due to local conformational constraints. This effect also accounts for the difference observed between an alternated and a random copolymer.  相似文献   

9.
In this investigation, hydrophobically modified polyacrylamide with low amounts of anionic long‐chain alkyl was synthesized by the free radical polymerization in deionized water. This water‐soluble copolymerization method is more convenient compared with the traditional micellar copolymerization methods. The copolymers were characterized using Fourier transform infrared, 1H NMR, and the molecular weight and polydispersity were determined using gel permeation chromatography. The solution behavior of the copolymers was studied as a function of composition, pH, and added electrolytes. As NaCl was added to solutions of AM/C11AM copolymers or pH was lowered, the shielding or elimination of electrostatic repulsions between carboxylate groups of the C11AM unit lead to coil shrinkage. The steady shear viscosity and dynamic shear viscoelastic properties in semidilute, salt‐free aqueous solutions were conducted to examine the concentration effects on copolymers. In addition, the shear superimposed oscillation technique was used to probe the structural changes of the network under various stresses or shear conditions. We prepared hydrophobically modified polyacrylamide with N‐alkyl groups in the aqueous medium. The advantage of this method is that the production is pure without surfactants. These results suggest that the unique aqueous solution behavior of the copolymers is different from conventional hydrophobically associating acrylamide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2465–2474, 2008  相似文献   

10.
Dielectric and infrared data have been obtained over a wide temperature range on copolymers of ethyl methacrylate with methacrylic and acrylic acid synthesized by radical copolymerization. The dissociation energy ΔH0 for the acid dimer in the copolymer is estimated from the temperature dependence of the relaxation strength Δεα of the α relaxation, which is associated with the glass transition. The value of δH0 obtained by this method is in fair agreement with that determined by infrared (IR) spectroscopy. The strength of the α relaxation and its activation energy are both increased by the incorporation of methacrylic acid units but are decreased by acrylic acid units. This behavior is attributed to the restriction of main-chain motions by hydrogen-bonded acid dimers in the copolymers with methacrylic acid and to the incorporation of more flexible links in the copolymers with acrylic acid. The β relaxation observed below the glass transition temperatures is almost unaffected by the incorporation of methacrylic acid.  相似文献   

11.
Intermittent shear flow including start-up flow and small oscillatory amplitude time sweep or stress relaxation after cessation of shear flow was used to study the rheological behavior and internal structure of thermotropic liquid crystalline polymer (TLCP). There are two kinds of intermittent shear flow: all start-up flows are in the same direction (intermittent flow forward: IFF) and start-up flows change their directions alternately (intermittent flow reversal: IFR). The results show that the stress of start-up flow of IFF and IFR in the test process is not superposed, indicating different changes of internal structure of thermotropic LCP (TLCP). Two main factors affect structure changes in the experimental time scale. One relates to long-term texture relaxation process, the other is an interchain reaction that becomes important after 30 min. The two factors raise the stress of IFF, but express complex effects for the stress of IFR. The latter factor becomes very important at long time annealing process. The relaxation behavior was also studied by the application of wide range relaxation spectrum calculated from the combined dynamic modulus, which gave three characteristic relaxation times (0.3, 10 and 600 s) ascribable to the relaxations of less-phase orientation, domain orientation, and domain deformation, respectively. The result also shows that the domain coalescence (texture relaxation), a long relaxation time, is a much slow process and lasts beyond 2400 s of the test time.  相似文献   

12.
We developed a simple time-dependent mean-field theory to describe the phase separation kinetics of either homopolymers or AB-diblock copolymers in supercritical (SC) fluids. The model, previously used to describe the phase behavior of AB-block copolymers under the assumption of strong solvent selectivity for just one copolymer chain, has been extended to study the kinetics of the phase separation process. Time resolved small angle x-ray scattering (TR-SAXS) measurements have been performed on different AB-diblock copolymers containing a perfluorinated chain and dissolved in SC-CO2. The data obtained over a wide range of pressure and temperature confirm our theoretical predictions. Particularly interesting is the presence of two relaxation frequencies for the homogeneous solution --> spherical aggregate transition, where the two relaxation processes depend on the depth of the pressure jump and on temperature. The whole phenomenon could be explained as an initial SC solvent/polymer phase separation followed by a slow reorientation process to form spherical aggregates driven by the copolymer solvophilic moiety.  相似文献   

13.
Emulsion polymerized interpenetratingpolymer networks (IPN) of polyacrylate and polystyrene exhibit a power law relaxation over a wide frequency range. The response of the material to oscillatory shear, step sheaf strain and a constant stress can be described with a two parameter constitutive equation. The power law behavior was previously found in polymers at their critical state where molecular motions were correlated over large distances without intrinsic size or time scale.The effect of composition and crosslink density on the behavior of the material is studied. The behavior might be explained with the granular structure of the material.  相似文献   

14.
We carried out dynamic mechanical measurements to investigate three different examples of block copolymers: styrene–isoprene diblock copolymers and styrene–butadiene–styrene and styrene–(styrene butadiene)–styrene triblock copolymers. Isochronal and isothermal measurements of the real and imaginary parts of the complex shear modulus were performed over wide ranges of temperature and frequency. The measurements showed the presence of an additional relaxation process appearing at temperatures higher than those of the glass relaxation of the polystyrene phase, which has been misinterpreted by some authors as an order–disorder transition. The frequency dependence revealed that this process was a relaxation process and did not belong to a first‐order transition. Moreover, the influence of crosslinking via dicumylperoxide was measured, and we constructed complete master curves to confirm the presence of two relaxation processes. The high‐temperature relaxation process was strongly suppressed by crosslinking. Therefore, it was possible to detect the glass relaxation process of the polystyrene phase in a precise manner. The results were compared with those of homopolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2198–2206, 2001  相似文献   

15.
The elastoviscous behavior of polyisobutylene may be interpreted in terms of a mechanical model consisting of a distribution of Maxwell elements connected in parallel. The structure of this “generalized Maxwell model” is specified by the distribution of relaxation times of the component elements. The relaxation of stress curve of the material is directly related to the distribution of relaxation times, and general expressions for the bulk viscosities (tensile and shear) of such a system in terms of the distribution of relaxation times are readily obtained. A simple “box distribution” of relaxation times is described which can be used to approximate the relaxation behavior of polyisobutylene at the long-time end of the relaxation time spectrum, and in terms of which the expressions for bulk viscosity reduce to very simple form. The parameters specifying this distribution may be determined from experimental relaxation curves by a simple graphical method. Values of these parameters as a functions of molecular weight and temperature are computed, by use of these data. It is shown that bulk viscosity values calculated from relaxation data by this method are in good agreement with experimental values for both tensile and shear deformations, and for both unfractionated and fractionated polymers. Measurements of viscosity and of relaxation of stress can thus be directly correlated, and could be used in combination to characterize elastoviscous properties over wide ranges of molecular weight and temperature.  相似文献   

16.
The objective of this study is to analyze the glass transition temperature and relaxation processes of low molecular weight polystyrene-block-polyisoprene diblock copolymers with different compositions, synthesized via anionic polymerization. Thermal properties were investigated by differential scanning calorimetry and dynamic-mechanical thermal analysis, while the morphologies at room temperature were investigated by transmission electron microscopy and small-angle X-ray scattering. The χN values indicate that the diblock copolymers lie near the weak segregation regime. Three different experimental techniques were applied to determine the dynamic properties, i.e., linear viscoelastic shear oscillations, creep recovery experiments, and dielectric spectroscopy. The rheological experiments were performed above the order–disorder transition temperature where the diblock copolymers behave like a Maxwell fluid. Our results indicate that the presence of the polyisoprene segments strongly influences the monomeric friction coefficient and the tendency to form entanglements above the order–disorder temperature. Consequently, the zero-shear rate viscosity of a diblock copolymer is much lower than the zero-shear rate viscosity of the neat polystyrene block (the polystyrene precursor of the polymerization procedure). Dielectric spectroscopy enables the analysis of relaxation processes below the glass transition of the polystyrene microphase. Frequency sweeps indicate the dynamic glass transition of the polyisoprene blocks, which are partly mixed with the polystyrene blocks, which are always the majority component in the block copolymers of this study.  相似文献   

17.
The rather complex rheological behavior of block copolymers and thermotropic liquid-crystalline polymers is illustrated, putting emphasis on transient shear flow and stress relaxation behavior.  相似文献   

18.
Static and dynamic properties of complexes formed by hyperbranched polymers with linear polyelectrolytes are studied under the influence of steady shear flow by means of Brownian dynamics simulations. Models of peripherally charged hyperbranched molecules bearing two extreme topological structures and different molecular weights complexed with linear neutralizing chains are subjected to a range of shear rates starting from a low-shear regime toward the complex-breaking point. Examination of the stability limit, shape and mass distribution parameters, and dynamics in different lengths and timescales is performed as a function of the applied shear. The results described illustrate features of the generic behavior that should be expected from such systems under conditions of steady shear flow.  相似文献   

19.
To relate the mechanical responses of hard–soft copolymer systems with their microstructures, a coarse-grained molecular dynamics approach is employed, and mechanical properties of both hard and soft domains are calculated. We first investigate the enhancement mechanism of hard domains under tensile and shear loading conditions with pressure. The energy factor that denotes the interaction between hard beads dominates the microphase separation and morphology. Our numerical experiments show that pressure is the most crucial factor in shear-under-pressure tests, with larger pressure leading to higher shearing resistance of the copolymers. The viscoelastic behaviors of hard–soft copolymers are computed from the stress autocorrelation function. The stress relaxation indicates that the soft matrix is in a rubbery state at room temperature while hard domains are “glass-like” and can be viewed as elastic solids in a macroscale model. In addition, local elastic constants of hard domains are computed using the stress–strain fluctuation method with purely local stress and local strain. Those results can be used as inputs for macroscale models for copolymers and can provide guidelines for designing polymeric materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1552–1566  相似文献   

20.
Block copolymers have been extensively studied due to their ability to spontaneously self‐organize into a wide variety of morphologies that are valuable in energy‐, medical‐, and conservation‐related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, it is demonstrated here that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks are a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms of the order–disorder transition (ODT), has been investigated. The results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase‐separate. We also report that large variation in incompatibility can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence‐controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random‐copolymer midblock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号