首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to utilize laboratory-prepared nano-silica (NS) and nano-alumina (NA) as low-cost nano-oxides additions for improving the mechanical properties and thermal resistance of hardened ordinary Portland cement (OPC) pastes. NS was synthesized from rice husk ash in the absence of any surfactant, while NA was synthesized from AlCl3 in the presence of CTAB as a surfactant. The average particle sizes of synthesized NS and NA were 30 and 40 nm, respectively. Nano-silica or nano-alumina was added to OPC as a single phase with different ratios of 0.5, 1, 2 and 3 by mass % of OPC. The physico-chemical characteristics of different OPC-NS and OPC-NA hardened pastes were studied after 1, 3, 7, 14, 28 and 90 days of hydration. The resistance of the hardened composites for firing was evaluated for specimens cured for 28 days under tap water and then fired at 300, 600 and 800 °C for 3 h. The fired specimens were cooled by two methods: gradual cooling and rapid cooling. The compressive strength test was performed for all mixes at each firing temperature. The compressive strength results revealed that the optimum addition of NS is 1, whereas the optimum addition of NA is 0.5 by mass % of OPC. XRD, TG/DTG and SEM results indicated that ill-crystalline and nearly amorphous C–S–H, C–A–S–H and C–A–H were the main hydration products.  相似文献   

2.
The hydration of two calcium hydroxide— silica fume mixtures was studied at 25°C, these are Mix I and Mix II with molar lime/silica ratios of 1 and 1.7, respectively. The free lime, free silica and chemically combined water contents were determined at various time of hydration from which the molar CaO/SiO2 ratios of the formed calcium silicate hydrate, C?S?H, were calculated. The results indicated that hydration takes place in six steps where C?S?H (I) is formed at early stages of hydration, for Mix I, While for Mix II formation of C?S?H (I) and C?S?H (II) were detected by X-ray diffraction analysis and differential thermal analysis.  相似文献   

3.
Summary Dielectric constants and loss tangents of a Portland cement paste were measured during and after hardening in the frequency range 60 c/s-300 kc/s. One day after preparation two loss areas were observed; during hydration (at 20 °C; 65% R. H.) a h. f. maximum moved slowly to lower frequencies; a l. f. loss increased in magnitude during the first few days of curing, but disappeared during further hardening. Results for a cement paste cured under water for 6 weeks, showed that the h. f. maximum had come to a stop at about 10 kc/s. From the continuous shift of this maximum with temperature in passing the freezing-point it is concluded that the h. f. loss is caused by water of crystallization; the activation energy is 13 kcal/mole. The l. f. loss is believed to be caused by water in open pores. Cement exposed to air during hardening appears to have more open pores than cement hardened under water.
Zusammenfassung Dielektrische Konstante und dielektrische Verluste von Portland-Zement Pasta wurden w?hrend und nach Aush?rtung im Frequenzbereich zwischen 60 und 3.105 Hz gemessen und diskutiert. Ein Tag nach der Bereitung der Paste zeigt diese zwei Verlustgebiete. W?hrend der Aush?rtung verschiebt sich das hochfrequente Verlustmaximum nach niederen Frequenzen. Es kommt schlie?lich bei etwa 104 Hz zum Stillstand, wie Messungen an unter Wasser ausgeh?rtetem Zement zeigen. Die Temperaturverschiebung dieses Maximums verl?uft stetig beim Durchgang durch den Gefrierpunkt mit einer Aktivierungsenergie von 13 kcal/Mol. Aus diesen Tatsachen ergibt sich ein Deutungsvorschlag dieses Maximums: Es wird Dipolverlusten von gebundenem Kristallwasser zugeschrieben. Das zweite, niederfrequente, Verlustgebiet erh?ht sich innerhalb der ersten Tage der Aush?rtung, um dann wieder zu verschwinden. Es wird als ein Maxwell-Wagner-Sillars-Maximum von in Poren absorbiertem Wasser gedeutet.
  相似文献   

4.
The aim of this paper is to study the solidification/stabilization potential of cementitious matrices on the immobilization of Zn(II) before its disposal into the environment by determining the mechanisms of interaction between the Zn(II) ions and the binder. The results of structural and mineralogical characterization of cement pastes formed with different amounts of immobilized Zn(II) ions are presented and the study includes results from thermogravimetric analysis (TG), scanning electron microscopy, X-ray diffraction, and leaching performance. Zn(II) ions delay the hydration reaction of Portland cement due to the formation of mainly CaZn2(OH)6·2H2O , as well as Zn5(CO3)2(OH)6, Zn(OH)2, and ZnCO3 in minor proportion. Correlations between total mass loss in TG analysis and leached Zn(II) ions in long-term curing pastes have been obtained. This result is important because in a preliminary approach from a TG on an early-aged cement paste containing Zn(II), it could be possible to perform an estimation of the amount of Zn(II) ions that could be leached, thus avoiding costly and time-consuming tests.  相似文献   

5.
Pozzolanic cement blends were prepared by the partial substitution of ordinary Portland cement (OPC) with different percentages of burnt clay (BC), Libyan clay fired at 700 °C, of 10, 20, and 30%. The pastes were made using an initial water/solid ratio of 0.30 by mass of each cement blend and hydrated for 1, 3, 7, 28, and 90 days. The pozzolanic OPC–BC blend containing 30% BC was also admixed with 2.5 and 5% silica fume (SF) to improve the physicomechanical characteristics. The hardened pozzolanic cement pastes were subjected to compressive strength and hydration kinetics tests. The results of compressive strength indicated slightly higher values for the paste made of OPC–BC blend containing 10% BC The results of DSC and XRD studies indicated the formation and later the stabilization of calcium silicates hydrates (CSH) and calcium aluminosilicate hydrates (C3ASH4 and C2ASH8) as the main hydration products in addition to free calcium hydroxide (CH). Scanning electron microscopic (SEM) examination revealed that the pozzolanic cement pastes made of OPC–BC mixes possesses a denser structure than that of the neat OPC paste. Furthermore, the addition of SF resulted in a further densification of the microstructure of the hardened OPC–BC–SF pastes; this was reflected on the observed improvement in the compressive strength values at all ages of hydration.  相似文献   

6.
During the formation of pastes, mortar and concretes have been used to capture CO2. This work presents a methodology to estimate the carbon dioxide (CO2) sequestered by high strength and sulfate-resistant Portland cement pastes during their early stages of hydration, by Thermogravimetry and Derivative Thermogravimetry. Water to cement ratio equal to 0.50 and 0.70 were evaluated and the captured CO2 amount was determined through TG/DTG curve data on initial cement mass basis, obtained during accelerated carbonation from the fluid state and accelerated carbonation after a first hydration process. The experiments were performed in a controlled chamber, maintaining the CO2 content at 20 vol % and the temperature at 25 °C, at different relative humidity (RH) (60 and 80 %) ambient. The procedure allows one to estimate the amount of CO2 sequestered by the initial cement mass of a given volume of paste, as well as to evaluate the RH and W/C ratio influence on the amount of hydrated formed products, mainly on the Ca(OH)2, important for CO2 fixation.  相似文献   

7.
8.
Portland cement hydration has been investigated by emanation thermal analysis (ETA), based on the application of radon atoms as radioactive indicators. This method enabled us to characterize continuously changes in the microstructure of the cement paste at selected temperatures. The numerical simulation of time dependences of the emanating rate during cement hydration was carried out. An agreement between the mathematical model and experimental results of the ETA was obtained.  相似文献   

9.
Thermoanalytical and microstructural measurement techniques allow the characterization of solids, their transformation, decomposition, specific surface and pore structure. These techniques are of importance for solids with high specific surface and/or porosity. Thermoanalytical techniques are applied to detect solid state reactions, to determine reaction temperatures and to monitor the progress of the reaction. They are useful to simulate thermal processes in the industry and to receive meaningful results with small samples in a short time. Specific surface, cumulative pore volume and pore volume distribution are obtained by intrusion and absorption techniques. Here selected applications of thermoanalytical and microstructure investigations in modern fields of materials research will be presented, as:
  • -pore analysis of sintering steps of ceramics,
  • -secondary structure of catalyst granules,
  • -template decomposition in zeolites,
  • -firing process in a composide ceramic tape,
  • -ignition of coke.
  •   相似文献   

    10.
    This work focuses on the thermal and mineralogical transformations of red wall tile pastes. The pastes contain different amounts of calcareous and are prepared with Brazilian raw materials. Thermal transformations are evaluated by TG, DTG and DTA, dilatometric analysis, and X-ray diffraction. Four endothermic transformations were identified and interpreted as the release of physically adsorbed water, dehydration of hydroxides, dehydroxylation of kaolinite, and decomposition of carbonate. An exothermic transformation within the 925–950°C range is associated to crystallization of new phases such as calcium aluminosilicates and mullite. TG measurements indicate that the total mass loss of the pastes is dependent on the amount of calcareous addition. Dilatometric analysis indicates the onset of sintering at around 900°C, leading to shrinkage of the pellets. The thermal analysis results agree well with the X-ray diffraction.  相似文献   

    11.
    12.
    Electric arc furnace dust (EAFD) is termed as a hazardous waste due to its contamination with heavy metals. Inertization of such very fine dust can be occurred via stabilization and solidification process within the hydrated Portland cement matrix. In this paper, the effect of the addition of various ratios of EAFD on the properties of the hardened Portland cement paste was investigated. Compressive strength, chemically combine water and free lime contents were determined. In addition, phase composition using XRD; DTA analysis; as well as microstructure of the formed hydrates for some selected samples were investigated using SEM. The obtained results showed that the paste containing 1/mass% EAFD give the highest compressive strength values at most hydration ages, specially the later ages, compared to the neat Portland cement blank paste. Whileas, the pastes containing 3 and 5/mass% EAFD showed lower values of compressive strength compared to those of the blank paste.  相似文献   

    13.
    This study focuses on the thermal and mineralogical transformations of floor tile pastes containing petroleum waste. The tile pastes prepared by the dry process contain up to 10 wt% of petroleum waste in replacement of kaolin. Thermal and mineralogical changes occurring during firing were characterized by differential thermal analysis, thermogravimetry analysis, derivative thermogravimetry, dilatometric analysis, open photoacoustic cell technique, X-ray diffraction, and scanning electron microscopy. During heating an endothermic transformation within the 511.4–577.5 °C range and an exothermic transformation within the 997.8–1001.6 °C range were identified. The endothermic transformation can be mainly attributed to the dehydroxylation of kaolinite. The exothermic transformation is mainly associated with the crystallization of primary mullite. TG measurements indicate that the total mass loss of the floor tile pastes is dependent on the amount of petroleum waste addition. It was found that the replacement of kaolin with petroleum waste, in the range up to 10 wt%, influenced the thermal expansion–shrinkage curve. In addition, the floor tile pastes containing petroleum waste have low values of thermal diffusivity.  相似文献   

    14.
    Journal of Thermal Analysis and Calorimetry - In the current investigation, the opportunity of employing nano-SiO2 (NS) to modify fire resistance of metakaolin-based geopolymer pastes has been...  相似文献   

    15.
    The durability and thermal stability of hardened Portland cement pastes containing vermiculite (V) and expanded vermiculite (EV) exposed to high temperatures were studied. Different mixtures were prepared using 2.5, 5, and 10 wt% of both types of V. Each mixture, after 28?days of hydration, was heated at 300, 600, and 800?°C for 3?h. Two modes of cooling were used; gradual cooling in air and rapid cooling in cold water. The percentage of residual strength, chemically combined water content, change in phase composition, and the thermal stability of the heated specimens were studied. The specimens cooled in water showed greater loss in strength than the air-cooled specimens. The presence of V improved the heat resistance of ordinary type I Portland cement (OPC) pastes. 5 wt% replacement revealed the best performance at all heating temperatures. The EV showed better thermal resistance than the nonexpanded one. Addition of silica fume (SF) with V in OPC pastes lead to superior performance. This can be explained as result of the combined effects of insulation properties of V and pozzolanic reactivity of SF which accounts for the notable increase in the residual strength for these mixes.  相似文献   

    16.
    In this investigation the effect of addition of magnetite nanoparticles on the hydration characteristics of both ordinary Portland cement (OPC) and high slag cement (HSC) pastes was studied. The cement pastes were prepared using a water/solid (W/S) mass ratio of 0.3 with addition of 0.05, 0.1, and 0.3 % of magnetic fluid Fe3O4 nanoparticles by mass of cement. An aqueous stable magnetic fluid containing Fe3O4 nanoparticles, with a mean diameter in the range of super-paramagnetism, was prepared via co-precipitation method from ferrous and ferric solutions. The admixed magnetite-cement pastes were examined for compressive strength, chemically combined water content, X-ray diffraction analysis, and differential scanning calorimetry. The results of compressive strength revealed that the hardened pastes made from OPC and HSC admixed with different amounts of magnetic fluid have higher compressive strength values than those of the neat cement OPC and HSC cement pastes at almost all ages of hydration. The results of chemically combined water content for the admixed cement pastes showed almost the same general trend and nearly comparable values as those of the neat cement pastes. From the XRD diffractograms obtained for the neat OPC and HSC cement pastes, the main hydration products identified are calcium silicate hydrates, portlandite, and calcium sulfoaluminate hydrates. Addition of magnetic fluid nanoparticles to both of OPC and HSC did not affect the main hydration products of the neat OPC or HSC cement in addition to one main basic difference, namely, the formation of calcium iron hydroxide silicate as a new hydration product with a reasonable hydraulic character.  相似文献   

    17.
    This paper represents a laboratory study on the acid resistance of hardened ordinary Portland cement (OPC) and blended OPC pastes at two different curing temperatures. The blended materials used are rice husk ash (RHA) and cement kiln dust (CKD). The blended cement pastes were prepared using a water/solid (W/S) ratio of 0.3. The effects of immersion in deionized water (pH 7) and sulfuric acid solutions (pH 1, 2 and 3) at two temperatures (20 and 50 °C) on the compressive strength and phase composition of the various hardened blended cement pastes were studied. The results of compressive strength revealed that the increase of curing temperature from 20 to 50 °C resulted in increase the reduction of compressive strength due to acid attack up 2 months, but the resistance to sulfuric acid attack increases after that time due to the formation of crystalline calcium silicate hydrates (CSH) which have higher resistance to acid attack than the amorphous CSH formed at the early ages of hydration. The presence of RHA and CKD improves the resistance to sulfuric acid attack at both curing conditions. From the results of X-ray diffraction analysis and differential scanning calorimetric technique curves, the main hydration products identified are CSH, portlandite, and calcium sulfoaluminate hydrates.  相似文献   

    18.
    This study focuses on the thermal and mineralogical transformations of clay ceramic pastes. The pastes contain different amounts of sugarcane bagasse ash waste. Thermal and mineralogical changes occurring during firing were characterized by differential thermal analysis, thermogravimetry analysis (TG), X-ray diffraction (XRD), and scanning electron microscopy. On heating three endothermic events within the 73.5–75.7, 276.9–283.5, and 567.1–573.5 °C temperature ranges were identified. The endothermic valleys could be mainly interpreted as the release of physically adsorbed water, dehydration of hydroxides, and dehydroxylation of kaolinite, respectively. Two exothermic events within the 618.9–690.1 and 948 °C temperature ranges were identified. The exothermic peaks are associated with the decomposition of organic compounds and crystallization of mullite from metakaolinite, respectively. TG results indicate that the clay ceramic pastes had a total mass loss in the 13.1–13.6 % range, and are dependent on the sugarcane bagasse ash waste amount added. It was found that the replacement of natural clay with sugarcane bagasse ash waste, in the range up to 20 wt%, influenced the thermal behavior and technological properties of the clay ceramic pastes. In addition, the thermal analysis results agree well with the XRD.  相似文献   

    19.

    Present study deals with the influence of metakaolin (MK), silica fume (SF) and ground granulated blast-furnace slag (BFS) on middle hydration of ordinary Portland cement replaced by 45 mass% of particular supplementary cementitious materials (SCMs). Acceleration of cement hydration by SF and MK was proved up to the first 12 h by isothermal calorimetry as well as by thermogravimetric analyses. From the beginning of deceleratory period, when SCMs stopped to act as accelerators, more evident influence of the dilution effect was observed. Nevertheless, the presence of pozzolanic reactions was demonstrated already after 15 h of curing and even when SF and MK were used in the amount equal to 5 mass%. Synergic effect of the used SCMs allowed to increase the quantity of BFS up to 35 mass% without significant changes in their positive action.

      相似文献   

    20.
    Journal of Thermal Analysis and Calorimetry - Two Portland cement (PC) replacement levels (35, 45 mass%) and three locally available supplementary cementitious materials (SCMs; metakaolin...  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号