首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of trans-[Pd(NHC)2Cl2] (NHC = IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; IiPr2 = 1,3-bis-isopropylimidazol-2-ylidene) with potassium graphite under an atmosphere of CO affords the palladium NHC carbonyl clusters [Pd3(μ-CO)3(NHC)3] (NHC = IMes, 1; IiPr2, 3). Treatment of 1 with SO2 at room temperature yields the bridging SO2 complex [Pd3(μ-SO2)3(IMes)3] (4) in quantitative yield. Complexes 1, 3 and 4 have been structurally characterised by X-ray crystallography.  相似文献   

2.
A reaction of the dimer [Mn(CO)4(SPh)]2 with (PPh3)2Pt(C2Ph2) gave the heterometallic complex (CO)4Mn(μ-SPh)Pt(PPh3)2 (I) and its isomer (CO)3(PPh3)Mn(μ-SPh)Pt(PPh3)(CO) (II). A reaction of complex I with a diphosphine ligand (Dppm) yielded the heterometallic complex (CO)3Mn(μ-SPh)Pt(PPh3)(Dppm) (III). Complexes IIII were characterized by X-ray diffraction. In complex I, the single Mn-Pt bond (2.6946(3) ?) is supplemented with a thiolate bridge with the shortened Pt-S and Mn-S bonds (2.3129(5) and 2.2900(6) ?, respectively). Unlike complex I, in complex II, one phosphine group at the Pt atom is exchanged for one CO group at the Mn atom. The Mn-Pt bond (2.633(1) ?) and the thiolate bridge (Pt-S, 2.332(2) ?; Mn-S, 2.291(2) ?) are retained. In complex III, the Mn-Pt bond (2.623(1) ?) is supplemented with thiolate (Pt-S, 2.341(2) ?; Mn-S, 2.292(2) 0?) and Dppm bridges (Pt-P, 2.240(1)?; Mn-P, 2.245(2) ?). Apparently, the Pt atom in complexes IIII is attached to the formally double bond , as in Pt complexes with olefins.  相似文献   

3.
It was determined by ESR spectroscopy that the UV irradiation of toluene solutions containing Hg[P(O)(OPri)2 and the complex (2-C60)Os(CO)(PPh3)2(CNBut) produces six stable regioisomeric adducts of phosphoryl radicals with complexes, which are not demetallated under UV irradiation and do not dimerize in the absence of UV irradiation. This is caused by the addition of the phosphoryl radicals to the carbon atoms of fullerene localized near the metal-containing moiety. The addition of the phosphoryl radicals to (2-C70)Os(CO)(PPh3)2(CNBut) gives rise to the formation of nine stable regioisomeric radical adducts. A comparison of the composition of regioisomers of the radical adducts of C70 with the phosphoryl radicals, which were formed directly from C70 and from the radical adducts of 2-C70)Os(CO)(PPh3)2(CNBut) by the demetallation of the latter, revealed an orienting effect of the osmium-containing moiety on the addition of the phosphoryl radicals to the fullerene complex.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1968–1972, September, 2004.  相似文献   

4.
Treatment of Os(κ2-S2CNMe2)H(CO)(PPh3)2 with HSiMeCl2 or HSiCl3 gives in high yield Os(κ2-S2CNMe2)(SiMeCl2)(CO)(PPh3)2 (1) or Os(κ2-S2CNMe2)(SiCl3)(CO)(PPh3)2 (2), respectively. The crystal structures of both compounds have been determined and the Os-Si distances are 2.3672(10) Å for 1 and 2.3449(12) Å for 2. In solution, and under forcing conditions, both compounds are extraordinarily unreactive towards hydroxide ions.  相似文献   

5.
Reactions of Ru3(CO)12 with PhTeBr3 and of Re(CO)5Cl with PhTeI in benzene give the stable complexes (CO)2RuBr2(PhTeBr)2 (I) and (CO)3Re(PhTeI)33-I) (II) containing two and three ligands PhTeX (X = Br or I), respectively. The bonds between these ligands and the central metal atom are fairly shortened (on average, Ru-Te, 2.608 ?; Re-Te, 2.7554(12)-2.7634(13) ?). The Te-X bonds in the ligands PhTeBr (2.5163(5) ?) and PhTeI (2.7893(15) ?) are not lengthened appreciably. In complex II, the iodide anion is not coordinated by rhenium, yet being attached through weak secondary bonds to three Te atoms of the three ligands PhTeI.  相似文献   

6.
将过渡金属配合物阳离子([M(DETA)2]n+(M=Cu2+,Ni2+,Co3+;DETA=Diethylenetriamine,二乙烯三胺)作为客体插入层状MnPS3层间得到了相应的3个夹层化合物。通过X-射线粉末衍射、元素分析和红外光谱对夹层化合物的结构进行了表征。结果表明,与主体MnPS3 0.65 nm的层间距相比较,夹层化合物(Mn0.88PS3[Cu(DETA)2]0.12)的层间距扩大了0.32 nm,由此推测客体[Cu(DETA)2]2+在层间以平面四方的配位形式存在,而另2个夹层化合物(Mn0.79PS3[Ni(DETA)2]0.21和Mn0.74PS3[Co(DETA)2]0.17)的层间距扩大了0.48 nm,说明客体[(M(DETA)2]n+,M=Co3+,Ni2+) 在主体层间以八面体配位形式存在。磁性测试结果表明过渡金属离子[(M(DETA)2]n+(M=Cu2+,Co3+)的插入能引起主体MnPS3的磁性在35~40 K发生由顺磁向亚铁磁性的转变并表现自发磁化,而客体[Ni(DETA)2]2+却使夹层化合物的反铁磁相互作用增强,抑制了自发磁化的发生。  相似文献   

7.
The reaction between Ru3(μ-H){μ3-C2CPh2(OH)}(CO)9 and HCCPh, carried out in the presence of HBF4 · Me2O, afforded the cluster complexes Ru3(μ-H)(μ3-CPh2CCCCPh)(CO)9 (5) and Ru33-CPhCHCC(CPh2)CHCPh}(μ-CO)(CO)8 (6), both of which were characterised by single-crystal X-ray studies.  相似文献   

8.
IR and single-crystal X-ray diffraction study are carried out for compound, C36H112Cl9Fe3N18O8P6(I). It crystallizes in the orthorhombic space group P212121 with a = 14.2992(3), b = 21.4351(4), c = 25.5407(5) ?, V = 7828.3(3) ?3, ρcalcd = 1.553 g/cm3, Z = 4. The FeCl fragment is coordinated with chlorine atom of two water molecules and three HMPA molecules to form a cation, with a distorted octahedral coordinate geometry. In the crystal I, the cation is linked with HMPA by the O-H…O hydrogen bond. The chiral crystal is formed through self-assembly even from achiral molecules.  相似文献   

9.

Abstract  

Thermolysis of cis-Fe(CO)4(SiCl3)2 results in the formation of the novel compound Fe2(CO)62-SiCl2)3, which was characterized by single crystal X-ray diffraction. Density functional theory calculations were carried out to elucidate possible reaction steps leading to the formation of Fe2(CO)6(SiCl2)3, including CO dissociation and chlorine abstraction by a SiCl3 radical generated from homolytic Fe–Si bond cleavage involving a singlet–triplet intersystem crossing.  相似文献   

10.
A DTA study of thermal decomposition of (NH4)2[Ru(NO)Cl5] in helium atmosphere has been carried out, a synthetic procedure for preparation of the trans-diammine complex mer-[Ru(NO)(NH3)2Cl3] (I) with yield ∼70% has been developed. On re-crystallization of I from aqueous solution a trans-aquanitroso complex [Ru(NO)(NH3)2Cl2(H2O)]Cl·H2O (II) has been isolated. The structures of the compounds have been determined by single crystal X-ray diffraction: space group Pbcn, a = 6.607(1) ? b = 11.255(2) ? c = 9.878(2) ? (I) and space group Ima2, a = 8.3032(3) ?, b = 8.0890(2) ?, c = 15.9192(5) ? II). Original Russian Text Copyright ? 2008 by M. A. Il’in, V. A. Emel’yanov, and I. A. Baidina __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 6, pp. 1128–1136, November–December, 2008.  相似文献   

11.
The reaction of [Cu3(dppm)33-OH)](ClO4)2 (1) with heterocumulenes (XCS; X = NPh, NMe and S) has been studied. The μ3-OH ligand inserts into PhNCS and MeNCS only in the presence of methanol. Insertion products are formed in accord with earlier observations made with copper(I)-aryloxides. On heating, the insertion products convert to a S bridged cluster [Cu4(dppm)44-S)](ClO4)2 (8), having a tetrameric core. However, in the reaction with CS2, 1 is converted to 8 even at room temperature in the presence of methanol. On the other hand, the dimeric complex [Cu2(dppm)2(CH3CN)4](ClO4)2, reacts with CS2 to give (diphenylphosphinomethyl)-diphenylphosphine sulfide, Ph2P-CH2-P(S)Ph2 (dppmS), which forms the complex [Cu(dppmS)2]ClO4 (9). A single crystal X-ray crystallographic study of 9, the first copper(I) complex of dppmS has been taken up to confirm the mono-oxidation of the dppm ligand and the nuclearity of the complex. Reactions of complex 1 with heterocumulenes and with elemental sulfur, are compared.  相似文献   

12.
Treatment of ruthenium carbonyl, [Ru3(CO)12] with phenylseleno tribromide PhSeBr3 afforded a new triruthenium cluster, [(CO)10Br4Ru3(μ-SePh)2] (1). Its molecular structure was determined by single crystal XRD method (P21/c; a = 10.514(3) Å; b = 10.814(3) Å; c = 19.063(5) Å; β = 105.064(4)°; V = 2093.1(10) Å3) and shown to have two lateral Ru(CO)3Br2 units attached via two PhSe bridges to a Ru(CO)4 center forming a chain-like Ru-Se-Ru-Se-Ru cluster core. This is in contrast with a recently reported reaction of PhTeBr3 with [Ru3(CO)12] which formed a monomeric complex of ruthenium-dicarbonyl-dibromo fragment coordinating two PhTeBr ligands, [(CO)2RuBr2(PhTeBr)2].  相似文献   

13.
The monoanions (η5-RC5H4)(CO)3Cr (1, R=H; 2, R=Me; 3, R=CO2Et) reacted with tetrahedral cluster FeCo23-S)(CO)9 to give single isolobal displacement products (η5-RC5H4)FeCrCo(μ3-S)(CO)8 (4, R=H; 5, R=Me; 6, R=CO2Et) in 86-89% yields, whereas monoanion (η5-RC5H4)(CO)3Cr (7, R=C(O)Me) reacted with FeCo23-S)(CO)9 to afford the expected single isolobal displacement product (η5-RC5H4)FeCrCo(μ3-S)(CO)8 (8, R=C(O)Me) in 5% yield and an unexpected square pyramidal cluster FeCo23-S)2(CO)9 (9) in 45% yield. Similarly, the dianions [η5-C5H4CH2(CH2OCH2)nCH2C5H45][(CO)3Cr]2 (10, n=1; 11, n=2; 12, n=3) reacted with two molecules of FeCo23-S)(CO)9 to produce double isolobal displacement products [η5-C5H4CH2(CH2OCH2)nCH2C5H45][FeCrCo(μ3-S)(CO)8]2 (13, n=1; 14, n=2; 15, n=3) in 32-36% yields, while treatment of dianion [η5-C5H4C(O)CH2]2[(CO)3Cr]2 (16) with two molecules of FeCo23-S)(CO)9 gave the unexpected square pyramidal cluster FeCo23-S)2(CO)9 (9) in 42% yield and the corresponding double isolobal displacement product [η5-C5H4C(O)CH2]2[FeCrCo(μ3-S)(CO)8]2 (17) in 8% yield. Products 4-6, 8, 9, 13-15 and 17 were characterized by elemental analyses, IR and 1H NMR spectroscopy, as well as for 4, 6 and 9 by X-ray diffraction techniques.  相似文献   

14.
The structures of two salts [Co(NH3)6][Rh(NO2)6] (I) and [Co(NH3)6][(NO2)3Rh(μ-NO2)1+x (μ-OH)2−x Rh(NO2)3]·(2−x)(H2O), x = 0.17 (II) are solved. Single crystals of the salts are obtained by the counter diffusion method through the gel of aqueous solutions of [Co(NH3)6]Cl3 and Na3[Rh(NO2)6]. The structure of [Co(NH3)6][Rh(NO2)6] is consistent with the diffraction data for a polycrystalline sample of poorly soluble fine salt formed in the exchange reaction between aqueous solutions of [Co(NH3)6]Cl3 and Na3[Rh(NO2)6]. The structure of [Co(NH3)6][(NO2)3Rh(μ-NO2)1+x (μ-OH)2−x Rh(NO2)3]·(2−x)(H2O), x = 0.17 exhibits the stabilizing effect of a large cation in the formation of novel, unknown previously coordination ions: [(NO2)3Rh(μ-NO2)(μ-OH)2Rh(NO2)3]3− and [(NO2)3Rh(μ-NO2)2(μ-OH)Rh(NO2)3]3−.  相似文献   

15.
Photolysis of W(CO)6 in the presence of Ph3SiH in n-heptane leads to the formation of the first tricarbonyl(η6-triphenylhydrosilane)tungsten complex W(CO)36-PhSiHPh2) (1) in good yield (ca. 70%). The molecular structure of the new tungsten-silane compound was established by single-crystal X-ray diffraction studies and characterized by IR, UV-Vis, 1H, 13C{1H}, and 29Si{1H} NMR spectroscopy.  相似文献   

16.
Novel anhydrous trinuclear 3-oxo complexes of Cr(III), Cr3(3-O)(CF3COO)6(CH3COOH)2(CF3COO) (I) and of Cr(III,III,II), Cr3(3-O)(CF3COO)6(CH3COOH)2(THF) (II) (where THF is (CH2)4O) are synthesized by anodic dissolution of metallic chromium in solutions of trifluoroacetic acid in acetonitrile and in tetrahydrofuran and their structures are studied by X-ray diffraction analysis. Complex I forms orthorhombic crystals with space group Pna21, a = 9.778(1) , b = 16.042(2) , c = 22.851(4) , Z = 4, R 1 = 0.0332; complex II crystallizes in monoclinic system: space group P21/c, a = 9.866(1) , b = 17.895(2) , c = 21.167(4) , = 100.75(2)°, Z = 4, R = 0.0422. The average Cr-(3-O) distances in compounds I and II are almost equal (1.943(3) and 1.927(3) ). An average length of the Cr-O bond in octahedral surrounding of metal atoms is different in complexes I and II (1.985(4) and 2.003(3) , respectively), which is specified by different oxidation states of the metal atom. The CrCr distances lie in an interval of 3.366(1)–3.337(1) .__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 4, 2005, pp. 266–272.Original Russian Text Copyright © 2005 by Glazunova, Boltalin, Troyanov.  相似文献   

17.
The fluorocarbon soluble, binuclear ruthenium(I) complexes [Ru(μ-O2CMe)(CO)2LF]2, where LF is the perfluoroalkyl substituted tertiary phosphine, P(C6H4-4-CH2CH2(CF2)7CF3)3, or P(CH2CH2(CF2)5CF3)3, were synthesized and partition coefficients for the complexes in fluorocarbon/hydrocarbon biphases were determined. Catalytic hydrogenation of acetophenone to 1-phenylethanol in benzotrifluoride at 105 °C occured in the presence of either [Ru(μ-O2CMe)(CO)2P(C6H4-4-CH2CH2(CF2)7CF3)3]2 (1) or [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 (2). The X-ray crystal structure of [Ru(μ-O2CMe)(CO)2P(CH2CH2(CF2)5CF3)3]2 was determined. The compound exhibited discrete regions of fluorous and non-fluorous packing.  相似文献   

18.
The compound [Os3(CO)10(μ-Cl)(μ-AuPPh3)] (2) was prepared from the reaction between [Os3(CO)10(NCMe)2] (1) and [AuClPPh3] under mild conditions. The reaction of 2 with 4-mercaptopyridine (4-pyS) ligand yielded compounds [Os3(CO)10(μ-H)(μ-SC5H4N)] (4), formed by isolobal replacement of the fragment [AuPPh3]+ by H+ and [Os3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (5). [Os3(CO)10(μ-H)(μ-SC5H4N)] (4) was also obtained by substitution of two acetonitrile ligands in the activated cluster 1 by 4-pyS, at room temperature in dichloromethane. Compounds 2-5 were characterized spectroscopically and the molecular structures of 4 and 5 in the solid state were obtained by single crystal X-ray diffraction studies.  相似文献   

19.
The title compound has been obtained in considerable yield by reacting Ru3(CO)12 with 2-pentynal-diethyl-acetal [CH3CH2CCC(H)(OEt)2] (PDA) in hydrocarbon solvents. The X-ray analysis shows that the title complex belongs to the well known family of the flyover derivatives. Some X-ray structural studies have been reported, many years ago, on di-iron flyover complexes; in contrast only a few examples of diruthenium derivatives have been structurally characterized.The complex contains ethoxy-groups which could potentially undergo hydrolysis in the presence of tetraethyl-orthosilicate (TEOS) in the presence of catalysts. Reactions of complex Ru2(CO)6[μ-η4-{EtC2C(H)(OEt)2}CO{EtC2C(H)(OEt)2}] with TEOS in the presence of HCl or of NaF (as catalysts) have been attempted. An inorganic-organometallic sol-gel material containing the skeleton of the complex has been obtained and characterized with IR-Raman, XRD on powders and SEM microscopy.  相似文献   

20.
New complexes of transition metals with organotellurium halide ligands are reported. Iodination of [CpMn(CO)2]2(μ-Ph2Te2) leads to the Te-Te bond cleavage and formation of CpMn(CO)2(PhTeI). Oxidative addition of PhTeBr3 to Fe(CO)5 gives the monomeric complex (CO)3FeBr2(PhTeBr) which is isostructural with the recently reported (CO)3FeI2(PhTeI). Insertion of phenyltellurenyl iodide (PhTeI) into the Fe-I bond of CpFe(CO)2I forms CpFe(CO)2(TeI2Ph). Molecular structures of the reported complexes were determined by single-crystal X-ray diffraction analysis (XRD). A considerable shortening of metal-tellurium distances is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号