首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Applying a magnetic field on the magnetic fluid thin film perpendicularly, leads a phase separation that is concentrated in particles separating from a dilute phase. The concentrated phase forms cylindrical columns that construct two-dimensional lattices. This kind of artificial lattice is a novel mesoscopic system and has been explored with optical microscope, CCD, and digital imaging analysis. We explore the ordering evolution of the two-dimensional extraordinary lattice by varying the applied field. The ordering of these lattices is analyzed in terms of translational and bond-orientation correlation functions to address the two-dimensional melting.  相似文献   

2.
The kinetics of chiral transitions in quark matter is studied in a two-flavor Nambu-Jona-Lasinio model. We focus on the phase-ordering dynamics subsequent to a temperature quench from the massless quark phase to the massive quark phase. We study the dynamics by considering a phenomenological model (Ginzburg-Landau free-energy functional). The morphology of the ordering system is characterized by the scaling of the order-parameter correlation function.  相似文献   

3.
Partially phase-separated liquid-crystal/polymer dispersions display highly fibrillar domain morphologies that are dramatically different from the typical structures found in isotropic mixtures. To explain this, we numerically explore the coupling between phase ordering and phase-separation kinetics in model two-dimensional fluid mixtures phase separating into a nematic phase, rich in liquid crystal, coexisting with an isotropic phase, rich in polymer. We find that phase ordering can lead to fibrillar networks of the minority polymer-rich phase.  相似文献   

4.
The order-disorder phase transition in Cu3Au has been studied by x-ray intensity fluctuation spectroscopy. Following a quench from the high-temperature, disordered phase, the ordering kinetics is well described by a universal scaling form that can be measured by time-resolved (incoherent) x-ray scattering. By using coherent scattering, we have measured the fluctuations about this universal scaling form. In the late stages of the ordering process, these fluctuations give a two-time correlation function C(q,t1,t2) which has a scaling form with natural variables deltat=/t1-t2/ and t =(t1+t2) / 2. The scaling form crosses over from linear in t to t1/2. These present the first such results for a nonconserved system.  相似文献   

5.
The dynamics of phase separation in quenched thermodynamically unstable systems is studied. The scaling law exhibited in the late stage of the ordering process is investigated by the interface model. In the kinetics of the order-disorder transition the motion of random interfaces is shown to be responsible for the scaling law. The scaling form of the scattering function is obtained with particular attention to the fluctuating thermal noises. A droplet picture is used to discuss spinodal decomposition of off-critically quenched binary fluids. The sealing function is calculated explicitly in the region where the Brownian coagulation is most dominant for the phase separation. It is shown that the thermal noises are relevant to the scaling law in the ordering process driven by the Brownian coagulation whereas they are negligible in the kinetics of order-disorder transition.  相似文献   

6.
Xintian Wu 《Physica A》2007,383(2):209-231
The locally ordered regions (LOR) in the phase transition in disordered systems are studied. There are two parts in this paper. One part is to report our numerical results on the one-dimensional saddle point equation of the Ginzburg-Landau Hamiltonian with random temperature in the presence of an ordering field. The disordered system is modelled as a lattice, on which each cell has a local reduced temperature. The random part of the local reduced temperature is distributed in the Gaussian form. The one-dimensional saddle point equation is solved numerically. The average, the fluctuation and the correlation length of the solution are calculated. The scaling relations for these quantities with the temperature, the ordering field and the disorder strength are derived. The numerical data are fitted with the scaling relations well. Another part is to discuss qualitatively the phase diagram of the finite-range correlated disordered systems. There are two proposed classes for the phase transition in connection with the LOR. One class is described by the percolative scenario, in which the phase transition is inhomogeneous. In the percolative scenario the percolation of the LOR dominates the phase transition. In another class, the phase transition is homogeneous, and can be described by the renormalization group (RG) with replica symmetry breaking (RSB). In the RG with RSB, there is nothing to do with the percolation of LOR. We shall show that these two theories, which seem contradictory, may describe two parts of the whole phase diagram. Whether the phase transition is homogeneous or inhomogeneous depends on the interaction between the LOR. If the interaction between the LOR is strong enough, the phase transition is percolative and inhomogeneous. If the interaction between the LOR is weak, the phase transition is homogeneous. The interaction between the LOR is discussed with the numerical solution on the saddle point equation.  相似文献   

7.
HgTe/CdTe quantum well has served as a new material in realizing the quantum spin Hall state. We investigate the localization and scaling behavior of electronic states in HgTe/CdTe quantum wells through the scaling analysis. A phase diagram where the boundary separating the localized and extended states is plotted in the parameter space which is spanned with disorder strength and Fermi energy. We also discuss the implications of these results on the behavior of topological insulator.  相似文献   

8.
It is shown, by means of Monte Carlo simulation and finite size scaling analysis, that the Heisenberg spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical temperature, at which both a spin glass and a chiral glass ordering develop. The Monte Carlo algorithm, adapted from lattice gauge theory simulations, makes it possible to thermalize lattices of size L = 32, larger than in any previous spin-glass simulation in three dimensions. High accuracy is reached thanks to the use of the Marenostrum supercomputer. The large range of system sizes studied allows us to consider scaling corrections.  相似文献   

9.
《Physics letters. A》2020,384(2):126062
A scaling theory of the Kondo lattices with frustrated exchange interactions is developed, criterium of antiferromagnetic ordering being investigated. Depending on the bare model parameters, one or two quantum phase transitions into non-magnetic spin-liquid and Kondo Fermi-liquid ground states can occur with increasing the bare coupling constant. Whereas the renormalization of the magnetic moment in the ordered phase can reach orders of magnitude, spin fluctuation frequency and coupling constant are moderately renormalized in the spin-liquid phase. This justifies application of the scaling approach.  相似文献   

10.
In order to characterize networks in the scale-free network class we study the frequency of cycles of length h that indicate the ordering of network structure and the multiplicity of paths connecting two nodes. In particular we focus on the scaling of the number of cycles with the system size in off-equilibrium scale-free networks. We observe that each off-equilibrium network model is characterized by a particular scaling in general not equal to the scaling found in equilibrium scale-free networks. We claim that this anomalous scaling can occur in real systems and we report the case of the Internet at the Autonomous System Level.Received: 15 January 2004, Published online: 14 May 2004PACS: 89.75.-k Complex systems - 89.75.Hc Networks and genealogical trees  相似文献   

11.
Using ground state computations, we study the transition from a spin glass to a ferromagnet in 3D spin glasses when changing the mean value of the spin-spin interaction. We find good evidence for replica symmetry breaking up until the critical value where ferromagnetic ordering sets in, and no ferromagnetic spin glass phase. This phase diagram is in conflict with the droplet/scaling and mean field theories of spin glasses. We also find that the exponents of the second order ferromagnetic transition do not depend on the microscopic Hamiltonian, suggesting universality of this transition.  相似文献   

12.
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system "flow diagram" in the volume fraction or stress plane (phi, F): at low phi the flow is disordered, with the viscosity obeying a Bagnold-like scaling only at small F and diverging as the jamming point is approached; if the shear stress is strong enough, at higher phi an ordered flow regime is found, the order-disorder transition being marked by a sharp drop of the viscosity. A broad jamming region is also observed where, in analogy with the glassy region of thermal systems, slow dynamics followed by kinetic arrest occurs when the ordering transition is prevented.  相似文献   

13.
M.C. Tringides 《Surface science》1991,250(1-3):260-266
When an ordered overlayer is heated at a high enough temperature, there is loss of order that can be monitored through the decay of the peak intensity of diffraction spots. This is caused by either particle loss to the gas phase or the onset of diffusion that disorders the overlayer. With the use of model simulations on a c(2 × 2) ordered overlayer, we show how the peak intensity decay can differentiate between the two cases. We further examine the growth laws describing the growth of disorder to see if they obey similar laws as the reverse ordering processes. When no interfaces separating degenerate phases are present, disordering and ordering processes do not obey the same growth laws.  相似文献   

14.
Phase separating systems present a unique opportunity for designing composites with hierarchical microstructure at different length scales. We report here our success in synthesizing phase separating metallic glasses exhibiting the entire spectrum of microstructural possibilities expected from a phase separating system. In particular, we report novel core shell and hierarchical structures of spherical glassy droplets, resulting from critical wetting behavior and limited diffusion. We also report synthesis of a bulk phase separating glass in a metallic glass system. The combination of unique core shell and hierarchical structures in metallic glass systems opens a new avenue for the microstructure design of metallic glasses.  相似文献   

15.
Motivated by a recent experiment, we study nonequilibrium quantum phenomena taking place in the quench of a spinor Bose-Einstein condensate through the zero-temperature phase transition separating the polar paramagnetic and planar ferromagnetic phases. We derive the typical spin domain structure (correlations of the effective magnetization) created by the quench arising due to spin-mode quantum fluctuations, and we establish a sample-size scaling law for the creation of spin vortices, which are topological defects in the transverse magnetization.  相似文献   

16.
A.J. Bray 《物理学进展》2013,62(3):357-459
The theory of phase-ordering dynamics, that is the growth of order through domain coarsening when a system is quenched from the homogeneous phase into a broken-symmetry phase, is reviewed, with the emphasis on recent developments. Interest will focus on the scaling regime that develops at long times after the quench. How can one determine the growth laws that describe the time dependence of characteristic length scales, and what can be said about the form of the associated scaling functions? Particular attention will be paid to systems described by more complicated order parameters than the simple scalars usually considered, for example vector and tensor fields. The latter are needed, for example, to describe phase ordering in nematic liquid crystals, on which there have been a number of recent experiments. The study of topological defects (domain walls, vortices, strings and monopoles) provides a unifying framework for discussing coarsening in these different systems.  相似文献   

17.
A. J. Bray 《物理学进展》2013,62(2):481-587
The theory of phase-ordering dynamics that is the growth of order through domain coarsening when a system is quenched from the homogeneous phase into a broken-symmetry phase, is reviewed, with the emphasis on recent developments. Interest will focus on the scaling regime that develops at long times after the quench. How can one determine the growth laws that describe the time dependence of characteristic length scales, and what can be said about the form of the associated scaling functions? Particular attention will be paid to systems described by more complicated order parameters than the simple scalars usually considered, for example vector and tensor fields. The latter are needed, for example, to describe phase ordering in nematic liquid crystals, on which there have been a number of recent experiments. The study of topological defects (domain walls, vortices, strings and monopoles) provides a unifying framework for discussing coarsening in these different systems.  相似文献   

18.
In the rough phase, the width of interfaces separating different phases of statistical systems increases logarithmically with the system size. This phenomenon is commonly described in terms of the capillary wave model, which deals with fluctuating, infinitely thin membranes, requiring ad hoc cut-offs in momentum space. We investigate the interface roughening in a unified approach, which does not rely on joining different models, namely in the framework of the Landau-Ginzburg model, that is renormalized field theory, in the one-loop approximation. The interface profile and width are calculated analytically, resulting in finite expressions with definite coefficients. They are valid in the scaling region and depend on the known renormalized coupling constant.  相似文献   

19.
We present resonant soft x-ray scattering results from small bandwidth manganites (Pr,Ca)MnO(3), which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperature and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic state and CE-type ordering.  相似文献   

20.
Litong Jiang 《中国物理 B》2021,30(11):117106-117106
The first-principles calculations were used to explore the tunable electronic structure in DyNiO3 (DNO) under the effects of the biaxial compressive and tensile strains. We explored how the biaxial strain tunes the orbital hybridization and influences the charge and orbital ordering states. We found that breathing mode and Jahn-Teller distortion play a primary role in charge ordering state and orbital ordering state, respectively. Additionally, the calculated results revealed that the biaxial strain has the ability to manipulate the phase competition between the two states. A phase transition point has been found under tensile train. If the biaxial train is larger than the point, the system favors orbital ordering state. If the strain is smaller than the point, the system is in charge ordering state favorably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号