首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gas chromatography-high-resolution mass spectrometry (GC-HRMS) method using solid-phase microextraction (SPME) for the determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wine at low ng L(-1) levels was developed. A robust SPME method was developed by optimizing several different parameters, including type of fiber, salt addition, sample volume, extraction and desorption time. The quantification limit for TCA and TBA in wine was lowered substantially using GC-HRMS in combination with the optimized SPME method and allowed the detection of low analyte concentrations (ng L(-1)) with good accuracy. Limits of quantification for red wine of 0.3 ng L(-1) for TCA and 0.2 ng L(-1) for TBA with gas chromatography-negative chemical ionization mass spectrometry and 0.03 ng L(-1) for TCA and TBA were achieved using GC-HRMS. The method was applied to 30 wines of which 4 wines were sensorically qualified as cork defected. TCA was found in three of these wines with concentrations in the range 2-25 ng L(-1). TBA was not detected in any of the samples.  相似文献   

2.
This study presents a method based on the use of multiple headspace solid-phase microextraction (MHS-SPME) for the quantitative analysis of 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol and 4-vinylguaiacol. MHS-SPME is a modification of SPME that implies several consecutive extractions from the same sample and avoids possible matrix effects. This study demonstrates the existence of a matrix effect in the analysis of compounds responsible for Brett character in wine when an HS-SPME based method is used with a carbowax/divinylbenzene (CW/DVB) fibre. For this reason, MHS-SPME is proposed as an alternative technique with respect to HS-SPME. The method proposed was validated and the detection limits obtained were 0.06 microg/l for 4-ethylguaiacol and 4-ethylphenol and, 0.20 microg/l for 4-vinylguaiacol and 0.12 microg/l for 4-vinylphenol. These detection limits are below the odour detection thresholds of the compounds in wine matrices. The repeatability obtained, in terms of relative standard deviation (RSD), was considered acceptable, ranging from 1 to 12%. To evaluate the applicability of the proposed MHS-SPME method, concentration results were compared with those obtained with the standard addition method, and the results were similar with both methods. Furthermore, the new method was satisfactorily applied to a number of commercial red, white and rosé wines. Therefore, MHS-SPME can be considered as an alternative to avoid the matrix effect in wine samples.  相似文献   

3.
Headspace solid-phase microextraction was applied to gas chromatography coupled to flame photometric detection to develop a method for analysing volatile sulphides and disulphides in wine. The Carboxen-polydimethylsiloxane-coated silica fiber was tested and different parameters such as presampling time, ionic strength, stirring, headspace volume, ethanol concentration, time and temperature of extraction were optimized to make extraction as efficient as possible. The optimized conditions enabled limits of detection to be obtained at the ng/l levels. The fiber tested has a strong affinity for the sulphur compounds studied and enables these analytes to be quantitatively determined in wines. The Carboxen-polydimethylsiloxane-coated fiber is more efficient at extracting than fibers such as those which are polydimethylsiloxane-coated and polyacrylate-coated, but its repeatability is worse. The overall process was successfully applied to identify and quantify sulphur compounds in white, red, rose and vintage wines.  相似文献   

4.
A procedure to determine 3-alkyl-2-methoxypyrazines in wines is described. It is based on the headspace solid-phase microextraction (HS-SPME) technique after a clean-up of the sample by distillation (previously acidified to pH 0.5) to remove ethanol and other volatile compounds that can interfere in the SPME. Determination is performed by means of capillary gas chromatography using a nitrogen-phosphorus detector. The method allows quantification of 3-isobutyl-2-methoxypyrazine, 3-sec-butyl-2-methoxypyrazine and 3-isopropyl-2-methoxypyrazine at their natural concentration levels and below their sensory thresholds in Cabernet Sauvignon and Merlot wines. The method was successfully applied to experimental red wines and the evolution of their pyrazine contents during the winemaking process was monitored. Pyrazine content increased during the first maceration day but did not change significantly during alcoholic and malolactic fermentation. Final contents in wines were 12-27 ng/l of 3-isobutyl-2-methoxypyrazine and 5-10 ng/l of 3-sec-butyl-2-methoxypyrazine.  相似文献   

5.
A headspace solid-phase microextraction (HS-SPME) and gas chromatography (GC) coupled to mass spectrometry (MS) method was developed to identify and quantify 14 volatile oak compounds in aged red wines. The most important HS-SPME variables were optimised by experimental design technique in order to improved the extraction process. The selected conditions were: 10 mL of sample in 20 mL sealed vials with addition of 30% of sodium chloride (saturated solution), divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fibre, 10 min of pre-incubation time, 70 degrees C of temperature and 60 min of extraction time without agitation. The features of the method were established for the studied compounds in terms of linear range, slope and intercept of the calibration graphs, detection and quantification limits and repeatability. For all compounds detection limits were below their threshold levels and repeatability, in terms of relative standard deviation, was good, with values between 3 and 11%. Finally, the method was applied to the analysis of six aged red wines by both internal standard and standard addition calibration methods. The concentrations obtained with both methods were statistically compared.  相似文献   

6.
The objectives of this study, were the development and validation of an analytical method for the determination of 2,4,6-trichloroanisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA) and pentachloroanisole (PCA) in red wine by headspace solid-phase microextraction and GC-MS as well as the application of the optimized and validated method for the quatification of chloroanisoles in different red wines from Navarra. To carry out this study, the extraction variables have been optimized. The fiber and the experimental design selected permit the determination of low analyte concentrations (ng/L) with good accuracy (<5%). Moreover, an analytical method for the determination of TCA and TeCA in wine by GC-MS has been validated. The results obtained in the validation step, recovery values, detection and quantitative limits, and precision were acceptable for all the analytes in the ranges of concentration studied (<5% and <10% for TCA and TeCA, respectively). This method has been used as an analytical method for the quantification of TCA and TeCA in red wine samples that were selected for this study, yielding good results.  相似文献   

7.
A method for analysing low-volatility sulphur compounds using solid-phase microextraction has been developed. The analytes were extracted directly from the liquid sample using fibres coated with different stationary phases. The best extraction efficiency was obtained with Carboxen-polydimethylsiloxane coating. Ionic strength, sample volume, time and temperature of the extraction were optimised and the matrix effect studied. The method enables 15 sulphur compounds in wine to be determined at trace levels with recoveries close to 100% and limits of detection between 0.05 and 5 microg/L. The overall method was successfully applied to the determination of the sulphur compounds studied in several red, white and rosé wines.  相似文献   

8.
The hyphenated technique namely microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed and studied for the simultaneous extraction/enrichment of polychlorinated biphenyls (PCBs) in aqueous samples prior to the quantification by gas chromatography (GC). The PCBs in aqueous media are extracted onto a solid-phase micro fibre via the headspace with the aid of microwave irradiation. The optimum conditions for obtaining extraction efficiency, such as the extraction time, addition of salts, addition of methanol, ratio of sample to headspace volume, and the desorption parameters were investigated. Experimental results indicated that the proposed MA-HS-SPME method attained the best extraction efficiency under the optimized conditions, i.e., irradiation of extraction solution (20 ml aqueous sample in 40 ml headspace vial with no additions of salt and methanol) under 30 W microwave power for 15 cycles (1 min power on and 3 min power off of each cycle). Desorption at 270 degrees C for 3 min provided the best detection results. The detection limit obtained were between 0.27 and 1.34 ng/l. The correlation coefficient for the linear dynamic range from 1 to 80 ng/l exceeded 0.99 for 18 PCBs.  相似文献   

9.
This paper deals with the improvement of a headspace solid-phase microextraction (HS-SPME) method, developed in a previous work, in order to analyse, simultaneously, thiols, sulphides and disulphides in wines. This can be achieved by applying Carboxen-polydimethylsiloxane fibres and a cryogenic trap to focus the analytes. Under optimum conditions, the HS-SPME procedure developed shows low limits of detection for the sulphides and disulphides studied (0.05-3 micrograms/l) and the thiols can also be analysed and detected at very low levels (0.5-1 microgram/l) with acceptable recoveries and repeatability.  相似文献   

10.
In this paper, we propose a comparative study to check the matrix effect on the extraction of three chlorophenols, 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol and pentachlorophenol, direct precursors of 2,4,6-trichloroanisole, in synthetic and commercial wines (white and red wines). A rapid, simple and sensitive methodology based on solid-phase microextraction (SPME) and GC with electron capture detection (GC-ECD) and mass spectrometric detection (GC-MS) was developed and the variables affecting the extraction process (temperature, time and salt content) were examined employing a factorial design at two levels. Since GC-ECD does not allow the clear identification of target analytes in white wine, owing to overlapped interferences, GC-MS/MS was used for subsequent examinations. Calibration curves were constructed in synthetic, white and red wine. Significant differences between the slopes of synthetic and red wine, with the exception of TCP, were observed. Analytical parameters were evaluated and satisfactory results were obtained, showing the usefulness of the headspace SPME (HS-SPME) method for determining chlorophenolic compounds in wines.  相似文献   

11.
The occurrence of off-flavours in wines and especially the so-called "cork taint defect" represents one of the most serious problem in wine industry in which 2,4,6-trichloroanisole has been blamed as the main responsible. The development of analytical methods for haloanisoles determination in wine/cork represent a challenge, mainly due to food matrix complexity and low taste and odour (T&O) threshold levels which are generally beyond the sensitivity of the analytical systems. In this work, a method based on the combined use of the recently developed multiple headspace solid-phase microextraction (MHS-SPME) and gas chromatography-ion-trap mass spectrometry has been optimised for the determination of haloanisoles in wines. This powerful analytical methodology is compared with several analytical approaches based on pervaporation, an innovative membrane-based technique similar to dynamic headspace. Analytical features of the methods assayed reveal their suitability for the appraisal of haloanisoles in this matrix in which threshold odor concentrations are in the range 4-40 ng l(-1). The analytical approaches have been applied to the analysis of haloanisoles in different Spanish white and red wines, in which spiking experiments showed good recoveries for the methodologies assayed.  相似文献   

12.
This study proposes the use of deuterated phthalates as internal standards for the accurate determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Unlike other internal standards proposed previously such as benzyl benzoate, deuterated phthalates enabled matrix-error free determinations to be performed without standard addition because statistically equal slopes were obtained for synthetic, white, rose and red wines. The relative standard deviation values under intermediate precision conditions ranged from 0.24 to 4.6%, and detection limits below 35 ng L(-1) were obtained. Recovery values were around 100% in most of cases and the method provided similar results to standard addition. Finally, the method was used to screen phthalate levels in 10 wine samples.  相似文献   

13.
A novel solid-phase microextraction (SPME) setup, circulating cooling solid-phase microextraction (CC-SPME), is developed for determining organochlorine pesticides (OCPs) in water. The linearity area of this method is 0.5-120 microg/l, its RSD value is less than 10% and detection limit is in the low ng/l when it is used to detect gamma-hexachlorocyclohexane, which is better than traditional headspace SPME (HS-SPME) and direct immersion SPME (DI-SPME) methods. The influence of factors such as pH, ionic intensity, adsorption time, and adsorption temperature were also investigated, respectively.  相似文献   

14.
A fluorescence polarization (FP) immunoassay, based on a monoclonal antibody and an ochratoxin A (OTA)-fluorescein tracer, has been developed for rapid screening of OTA in red wine. Wine samples were diluted with methanol and passed through aminopropyl solid-phase extraction columns prior to the FP assay. Average recoveries from samples spiked with OTA at levels of 2.0 and 5.0 ng/mL were 79% with RDS of 11% (n = 6). The limit of detection of the FP immunoassay was 0.7 ng/mL OTA, and the whole analysis was performed in less than 10 min. The assay was tested on 154 red wine samples (naturally contaminated or spiked at level ranging from 0.1 to 5.0 ng/mL) and compared with an high-performance liquid chromatography/immunoaffinity column clean-up method, showing a good correlation (r = 0.9222). Their compliance with the European regulation (2.0 ng/mL OTA maximum permitted level) was correctly assessed for 70% of the analyzed samples of red wine, whereas confirmatory analyses were required for the remaining ones with OTA levels close to the regulatory limit. No false-negative or positive results were observed using the FP immunoassay. The proposed FP assay is a useful screening method for OTA in red wines, when high throughput is required, that could also be used for white and rosé wines, which are known to contain less interfering compounds such as polyphenols.  相似文献   

15.
Chloroanisoles can migrate from the cork stopper in wine bottles to the wine and give it a musty taint so it is important to find a method by which they can be determined. The aim of this paper is to develop a method for quantifying 2,4-dichloroanisole, 2,6-dichloroanisole, 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole and 2,3,4,5,6-pentachloroanisole in cork using headspace solid-phase microextraction and gas chromatography with electron capture detection. After we had prepared the cork standards that were so essential to the work we optimised the parameters that most influence headspace solid-phase microextraction: fibre coating, vial volume, cork, kind and volume of solvent to help the extraction, extraction temperature and time, ionic strength and stirring. The method quantifies the total amount of chloroanisoles in cork stoppers (natural, agglomerated, agglomerated with disks and sparkling wine stoppers), at suitable concentrations so that the capacity of these compounds to give wine a musty taint can be evaluated. The quantification limits are: 2,6-dichloroanisole (8.6 ng/g), 2,4,6-trichloroanisole (0.8 ng/g), 2,4-dichloroanisole (3.5 ng/g), 2,3,4,6-tetrachloroanisole (0.6 ng/g), 2,3,4,5,6-pentachloroanisole (0.8 ng/g). The other quality parameters are: recoveries (90.3-105.8%), repeatability (4-13% (RSD expressed)) and intermediate precision (5-14% (RSD expressed)).  相似文献   

16.
A new method based on headspace solid-phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-GC/MS) to analyse 13 light and heavy volatile sulphur compounds in the same run was established. For the successful application of the procedure, various adsorption process parameters were optimised. In particular the nature of the adsorptive phase, the temperature, the ionic strength of the sample solutions and the equilibration time were considered. The best extraction conditions, in terms of the maximum signal obtainable for each compound, were obtained with a carboxen-polydimethylsiloxane-divinylbenzene (CAR-PDMS-DVB) 2 cm long coating fibre. The choice of suitable internal standards and the matrix effect were studied and the proposed method was validated by determining linearity, precision and accuracy, evaluating the critical, detection and quantification limits. This method is fast, sensitive and precise and easy to transfer to wine quality control. Finally, the proposed method was applied to the determination of the aforementioned sulphur compounds in 32 red and white wines.  相似文献   

17.
A method based on solvent extraction and purge-and-trap capillary gas chromatography with atomic emission detection (PT-GC-AED) for the determination of 2,4,6-trichloroanisole (TCA) in wines and cork stoppers was optimized and evaluated. TCA was previously extracted from the samples in pentane and the preconcentrated extract was reconstituted in water before being injected into the chromatograph by means of the PT system. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm) emission line. Two different calibration graphs were used to quantify TCA in the cork or the wine samples, owing to the interference produced by the ethanol content in the wines. Detection limits of 25 pg g(-1) and 5 ng l(-1) were obtained for corks and wines, respectively. The method provided recoveries from spiked samples ranging from 88.5 to 102.3%, confirming the reliability of the procedure and its suitability for routine monitoring.  相似文献   

18.
Multiple headspace solid-phase microextraction (MHS-SPME) with gas chromatography–mass spectrometry is proposed for quantification of nine volatile oak compounds in aged wines. These compounds are formed and extracted by wine when it is matured in oak barrels and are responsible for particular organoleptic properties and the high quality of these wines. Some important variables of the extraction process, for example volume of sample and extraction time, were studied. Extraction of 50 μL wine was performed with a divinylbenzene–Carboxen–polydimethylsiloxane fibre at 55 °C for 60 min. For calibration the same conditions were used, except that the wine was substituted by 50 μL of a standard solution in synthetic wine. The linearity, detection limits, and repeatability of the method were determined by use of standard solutions in synthetic wine. Detection limits were between 0.01 and 10 μg L−1 (for eugenol and furfural, respectively) and repeatability, expressed as relative standard deviation, was from 2 to 6%. The method was used to analyse six red wines and the concentrations obtained were statistically compared with those obtained by the standard addition method for the same wines.  相似文献   

19.
In this study we present a rapid and simultaneous assay method using headspace (HS) solid-phase microextraction (SPME)/gas chromatography (GC)/electron impact (EI) mass spectrometry (MS) (selected ion monitoring) for contaminants causing the principal organoleptic defects of wine (2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 1-octen-3-ol, geosmin, 2-methylisoborneol, 3-isopropyl-2-methoxypyrazine, fenchol, fenchone, 2-methoxy-3,5-dimethylpyrazine, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol, 4-vinylguaiacol, 3-isobutyl-2-methoxypyrazine, guaiacol and ethyl acetate). The method was validated according to protocols NF ISO 5725-1, 2 and NF V03-110. Its characteristics (limit of detection (LOD), limit of quantification (LOQ), uncertainties) were determined after having optimised the SPME parameters. The target contaminants were quantified in the wines below their threshold of perception with a satisfactory relative standard deviation for all the analytes except ethyl acetate (RSD=36%); for that, the assay method permits clear differentiation of the wines that are at risk of presenting an acescent character, i.e. containing more than 120mgL(-1) ethyl acetate. The target volatile and odorous substances were determined at concentrations significantly below their threshold of perception in a hydroalcoholic context and their threshold of recovery in wines.  相似文献   

20.
Headspace solid-phase microextraction has been applied to the analysis of volatile phenols in wine. Silica fibre coated with Carbowax-divinylbenzene was found to be more efficient at extracting these compounds than other fibres such as those coated with polydimethylsiloxane, polyacrylate, carboxen-polydimethylsiloxane, and polydimethylsiloxane-divinylbenzene. Different parameters such as extraction time, temperature of the sample during the extraction, ionic strength and sample volume were optimised using a two-level factorial design expanded further to a central composite design, in order to evaluate several possibly influential and/or interacting factors. The headspace (HS)-SPME procedure developed shows adequate detection and quantitation limits, and linear ranges for correctly analysing these compounds in wine. The recoveries obtained were close to 100%, with repeatability values lower than 16%. The method was applied to a variety of white and red wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号