首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Higher order differentiation was introduced in a cryptographic context by Lai. Several attacks can be viewed in the context of higher order differentiations, amongst them the cube attack of Dinur and Shamir and the AIDA attack of Vielhaber. All of the above have been developed for the binary case. We examine differentiation in larger fields, starting with the field \(\mathrm {GF}(p)\) of integers modulo a prime p, and apply these techniques to generalising the cube attack to \(\mathrm {GF}(p)\). The crucial difference is that now the degree in each variable can be higher than one, and our proposed attack will differentiate several times with respect to each variable (unlike the classical cube attack and its larger field version described by Dinur and Shamir, both of which differentiate at most once with respect to each variable). Connections to the Moebius/Reed Muller Transform over \(\mathrm {GF}(p)\) are also examined. Finally we describe differentiation over finite fields \(\mathrm {GF}(p^s)\) with \(p^s\) elements and show that it can be reduced to differentiation over \(\mathrm {GF}(p)\), so a cube attack over \(\mathrm {GF}(p^s)\) would be equivalent to cube attacks over \(\mathrm {GF}(p)\).  相似文献   

2.
Let \(R_{k}\) denote the polynomial residue ring \(F_{2^m}[u]/\langle u^{k} \rangle \), where \(2^{j-1}+1\le k\le 2^{j}\) for some positive integer \(j\). Motivated by the work in [1], we introduce a new Gray map from \(R_{k}\) to \(F_{2^m}^{2^{j}}\). It is proved that the Gray image of a linear \((1+u)\) constacyclic code of an arbitrary length \(N\) over \(R_{k}\) is a distance invariant linear cyclic code of length \(2^{j}N\) over \(F_{2^m}\). Moreover, the generator polynomial of the Gray image of such a constacyclic code is determined, and some optimal linear cyclic codes over \(F_{2}\) and \(F_{4}\) are constructed under this Gray map.  相似文献   

3.
In this paper we investigate univariate algebraic attacks on filter generators over extension fields \(\mathbb {F}_q=\mathbb {F}_{2^n}\) with focus on the Welch–Gong (WG) family of stream ciphers. Our main contribution is to reduce the general algebraic attack complexity on such cipher by proving new and lower bounds for the spectral immunity of such ciphers. The spectral immunity is the univariate analog of algebraic immunity and instead of measuring degree of multiples of a multivariate polynomial, it measures the minimum number of nonzero coefficients of a multiple of a univariate polynomial. In particular, there is an algebraic degeneracy in these constructions, which, when combined with attacks based on low-weight multiples over \(\mathbb {F}_q\), provides much more efficient attacks than over \(\mathbb {F}_2\). With negligible computational complexity, our best attack breaks the primitive WG-5 if given access to 4 kilobytes of keystream, break WG-7 if given access to 16 kilobytes of keystream and break WG-8 if given access to half a megabyte of keystream. Our best attack on WG-16 targeted at 4G-LTE is less practical, and requires \(2^{103}\) computational complexity and \(2^{61}\) bits of keystream. In all instances, we significantly lower both keystream and computational complexity in comparison to previous estimates. On a side note, we resolve an open problem regarding the rank of a type of equation systems used in algebraic attacks.  相似文献   

4.
Consistent reconstruction is a method for producing an estimate \(\widetilde{x} \in {\mathbb {R}}^d\) of a signal \(x\in {\mathbb {R}}^d\) if one is given a collection of \(N\) noisy linear measurements \(q_n = \langle x, \varphi _n \rangle + \epsilon _n\), \(1 \le n \le N\), that have been corrupted by i.i.d. uniform noise \(\{\epsilon _n\}_{n=1}^N\). We prove mean-squared error bounds for consistent reconstruction when the measurement vectors \(\{\varphi _n\}_{n=1}^N\subset {\mathbb {R}}^d\) are drawn independently at random from a suitable distribution on the unit-sphere \({\mathbb {S}}^{d-1}\). Our main results prove that the mean-squared error (MSE) for consistent reconstruction is of the optimal order \({\mathbb {E}}\Vert x - \widetilde{x}\Vert ^2 \le K\delta ^2/N^2\) under general conditions on the measurement vectors. We also prove refined MSE bounds when the measurement vectors are i.i.d. uniformly distributed on the unit-sphere \({\mathbb {S}}^{d-1}\) and, in particular, show that in this case, the constant \(K\) is dominated by \(d^3\), the cube of the ambient dimension. The proofs involve an analysis of random polytopes using coverage processes on the sphere.  相似文献   

5.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

6.
Zigzag strip bundles are new combinatorial models realizing the crystals B() for the quantum affine algebras \(U_{q}(\mathfrak {g})\), where \(\mathfrak {g}=B_{n}^{(1)},D_{n}^{(1)}\), \(D_{n+1}^{(2)}\), \(C_{n}^{(1)}\), \(A_{2n-1}^{(2)}\), \(A_{2n}^{(2)}\). Recently, these models were used to the realization of highest weight crystals except for the highest weight crystal B0) over the quantum affine algebra \(U_{q}(C_{n}^{(1)})\). In this paper, we construct the highest weight crystal B0) over the quantum affine algebra \(U_{q}(C_{n}^{(1)})\) using zigzag strip bundles, which completes the realizations of all highest weight crystals over \(U_{q}(\mathfrak {g})\).  相似文献   

7.
Let \(X, X_{1}, X_{2}, \ldots \) be i.i.d. random variables, and set \(S_{n}=X_{1}+\cdots +X_{n}\) and \( V_{n}^{2}=X_{1}^{2}+\cdots +X_{n}^{2}.\) Without any moment conditions on \(X\), assuming that \(\{S_{n}/V_{n}\}\) is tight, we establish convergence of series of the type (*) \(\sum \nolimits _{n}w_{n}P(\left| S_{n}\right| /V_{n}\ge \varepsilon b_{n}),\) \(\varepsilon >0.\) Then, assuming that \(X\) is symmetric and belongs to the domain of attraction of a stable law, and choosing \(w_{n}\) and \(b_{n}\) suitably\(,\) we derive the precise asymptotic behavior of the series (*) as \(\varepsilon \searrow 0. \)  相似文献   

8.
For a commutative C*-algebra \({\mathcal {A}}\) with unit e and a Hilbert \({\mathcal {A}}\)-module \({\mathcal {M}}\), denote by End\(_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all bounded \({\mathcal {A}}\)-linear mappings on \({\mathcal {M}}\), and by End\(^*_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all adjointable mappings on \({\mathcal {M}}\). We prove that if \({\mathcal {M}}\) is full, then each derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is \({\mathcal {A}}\)-linear, continuous, and inner, and each 2-local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) or End\(^{*}_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation. If there exist \(x_0\) in \({\mathcal {M}}\) and \(f_0\) in \({\mathcal {M}}^{'}\), such that \(f_0(x_0)=e\), where \({\mathcal {M}}^{'}\) denotes the set of all bounded \({\mathcal {A}}\)-linear mappings from \({\mathcal {M}}\) to \({\mathcal {A}}\), then each \({\mathcal {A}}\)-linear local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation.  相似文献   

9.
We choose some special unit vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) in \({\mathbb {R}}^3\) and denote by \({\mathscr {L}}\subset {\mathbb {R}}^5\) the set of all points \((L_1,\ldots ,L_5)\in {\mathbb {R}}^5\) with the following property: there exists a compact convex polytope \(P\subset {\mathbb {R}}^3\) such that the vectors \({\mathbf {n}}_1,\ldots ,{\mathbf {n}}_5\) (and no other vector) are unit outward normals to the faces of P and the perimeter of the face with the outward normal \({\mathbf {n}}_k\) is equal to \(L_k\) for all \(k=1,\ldots ,5\). Our main result reads that \({\mathscr {L}}\) is not a locally-analytic set, i.e., we prove that, for some point \((L_1,\ldots ,L_5)\in {\mathscr {L}}\), it is not possible to find a neighborhood \(U\subset {\mathbb {R}}^5\) and an analytic set \(A\subset {\mathbb {R}}^5\) such that \({\mathscr {L}}\cap U=A\cap U\). We interpret this result as an obstacle for finding an existence theorem for a compact convex polytope with prescribed directions and perimeters of the faces.  相似文献   

10.
Let G be a reductive algebraic group over an algebraically closed field of characteristic zero, and let \(\mathfrak{h}\) be an algebraic subalgebra of the tangent Lie algebra \(\mathfrak{g}\) of G. We find all subalgebras \(\mathfrak{h}\) that have no nontrivial characters and whose centralizers \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) and \(P(\mathfrak{g})^\mathfrak{h} \) in the universal enveloping algebra \(\mathfrak{U}(\mathfrak{g})\) and in the associated graded algebra \(P(\mathfrak{g})\), respectively, are commutative. For all these subalgebras, we prove that \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} = \mathfrak{U}(\mathfrak{h})^\mathfrak{h} \otimes \mathfrak{U}(\mathfrak{g})^\mathfrak{g} \) and \(P(\mathfrak{g})^\mathfrak{h} = P(\mathfrak{h})^\mathfrak{h} \otimes P(\mathfrak{g})^\mathfrak{g} \). Furthermore, we obtain a criterion for the commutativity of \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) in terms of representation theory.  相似文献   

11.
We obtain lower bounds on blow-up of solutions for the 3D magneto-micropolar equations. More precisely, we establish some estimates for the solution \((\mathbf{u},\mathbf{w},\mathbf{b}) (t)\) in its maximal interval \([0,T^{*})\) provided that \(T^{*}<\infty\), which show for \(\delta\in(0,1)\) that \(\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}\) is at least of the order \((T^{*}-t)^{-(\delta s)/(1+2\delta)}\) for \(s\geq1/2+\delta\). In particular, by choosing a suitable \(\delta\), one concludes that \(\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}\) is at least of the order \((T^{*}-t)^{-s/4}\), and \((T^{*}-t)^{1/4-s/2}\) for \(s\geq1\), and \(1/2< s<3/2\), respectively. We also show that \((T^{*}-t)^{-s/3}\) is a lower rate for \(\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}\) if \(s>3/2\).  相似文献   

12.
In this paper, by using Fourier splitting method and the properties of decay character \(r^{*}\), we consider the algebraic time decay rate of solutions to a new Hall-MHD system in Sobolev space \(H^{m}(\mathbb{R} ^{3})\times H^{m+1}(\mathbb{R}^{3})\) for \(m\geq 0\).  相似文献   

13.
In this paper, we extend the well-known result “the predual of Hardy space \(H^1\) is VMO” to the product setting, associated with differential operators. Let \(L_i\), \(i = 1, 2\), be the infinitesimal generators of the analytic semigroups \(\{e^{-tL_i}\}\) on \(L^2({\mathbb {R}})\). Assume that the kernels of the semigroups \(\{e^{-tL_i}\}\) satisfy the Gaussian upper bounds. We introduce the VMO spaces VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) associated with operators \(L_1\) and \(L_2\) on the product domain \(\mathbb {R}\times \mathbb {R}\), then show that the dual space of VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) is the Hardy space \(H^1_{L_1^*, L_2^*}(\mathbb {R}\times \mathbb {R})\) associated with the adjoint operators \(L^*_1\) and \(L^*_2\).  相似文献   

14.
In this paper we are concerned with the multiplicity of solutions for the following fractional Laplace problem
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}u= \mu |u|^{q-2}u + |u|^{2^*_s-2}u &{}\quad \text{ in } \Omega \\ u=0 &{}\quad \text{ in } {\mathbb {R}}^n{\setminus } \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \subset {\mathbb {R}}^n\) is an open bounded set with continuous boundary, \(n>2s\) with \(s\in (0,1),(-\Delta )^{s}\) is the fractional Laplacian operator, \(\mu \) is a positive real parameter, \(q\in [2, 2^*_s)\) and \(2^*_s=2n/(n-2s)\) is the fractional critical Sobolev exponent. Using the Lusternik–Schnirelman theory, we relate the number of nontrivial solutions of the problem under consideration with the topology of \(\Omega \). Precisely, we show that the problem has at least \(cat_{\Omega }(\Omega )\) nontrivial solutions, provided that \(q=2\) and \(n\geqslant 4s\) or \(q\in (2, 2^*_s)\) and \(n>2s(q+2)/q\), extending the validity of well-known results for the classical Laplace equation to the fractional nonlocal setting.
  相似文献   

15.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

16.
We consider a family \(M_t^n\), with \(n\geqslant 2\), \(t>1\), of real hypersurfaces in a complex affine n-dimensional quadric arising in connection with the classification of homogeneous compact simply connected real-analytic hypersurfaces in  \({\mathbb {C}}^n\) due to Morimoto and Nagano. To finalize their classification, one needs to resolve the problem of the embeddability of \(M_t^n\) in  \({\mathbb {C}}^n\) for \(n=3,7\). In our earlier article we showed that \(M_t^7\) is not embeddable in  \({\mathbb {C}}^7\) for every t and that \(M_t^3\) is embeddable in  \({\mathbb {C}}^3\) for all \(1<t<1+10^{-6}\). In the present paper, we improve on the latter result by showing that the embeddability of \(M_t^3\) in fact takes place for \(1<t<\sqrt{(2+\sqrt{2})/3}\). This is achieved by analyzing the explicit totally real embedding of the sphere \(S^3\) in \({\mathbb {C}}^3\) constructed by Ahern and Rudin. For \(t\geqslant {\sqrt{(2+\sqrt{2})/3}}\), the problem of the embeddability of \(M_t^3\) remains open.  相似文献   

17.
The dynamics of functions \(f_\lambda (z)= \lambda \frac{\mathrm{e}^{z}}{z+1}\ \text{ for }\ z\in \mathbb {C}, \lambda >0\) is studied showing that there exists \(\lambda ^* > 0\) such that the Julia set of \(f_\lambda \) is disconnected for \(0< \lambda < \lambda ^*\) whereas it is the whole Riemann sphere for \(\lambda > \lambda ^*\). Further, for \(0< \lambda < \lambda ^*\), the Julia set is a disjoint union of two topologically and dynamically distinct completely invariant subsets, one of which is totally disconnected. The union of the escaping set and the backward orbit of \(\infty \) is shown to be disconnected for \(0<\lambda < \lambda ^*\) whereas it is connected for \(\lambda > \lambda ^*\). For complex \(\lambda \), it is proved that either all multiply connected Fatou components ultimately land on an attracting or parabolic domain containing the omitted value of the function or the Julia set is connected. In the latter case, the Fatou set can be empty or consists of Siegel disks. All these possibilities are shown to occur for suitable parameters. Meromorphic functions \(E_n(z) =\mathrm{e}^{z}(1+z+\frac{z^2}{2!}+\cdots +\frac{z^n}{n!})^{-1}\), which we call exponential-like, are studied as a generalization of \(f(z)=\frac{\mathrm{e}^{z}}{z+1}\) which is nothing but \(E_1(z)\). This name is justified by showing that \(E_n\) has an omitted value 0 and there are no other finite singular value. In fact, it is shown that there is only one singularity over 0 as well as over \(\infty \) and both are direct. Non-existence of Herman rings are proved for \(\lambda E_n \).  相似文献   

18.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

19.
Let \(b_{\ell }(n)\) denote the number of \(\ell \)-regular partitions of n. By employing the modular equation of seventh order, we establish the following congruence for \(b_{7}(n)\) modulo powers of 7: for \(n\ge 0\) and \(j\ge 1\),
$$\begin{aligned} b_{7}\left( 7^{2j-1}n+\frac{3\cdot 7^{2j}-1}{4}\right) \equiv 0 \pmod {7^j}. \end{aligned}$$
We also find some infinite families of congruences modulo 2 and 7 satisfied by \(b_{7}(n)\).
  相似文献   

20.
Let \(\alpha ,\beta \) be orientation-preserving diffeomorphism (shifts) of \(\mathbb {R}_+=(0,\infty )\) onto itself with the only fixed points \(0\) and \(\infty \) and \(U_\alpha ,U_\beta \) be the isometric shift operators on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f=(\alpha ')^{1/p}(f\circ \alpha )\), \(U_\beta f=(\beta ')^{1/p}(f\circ \beta )\), and \(P_2^\pm =(I\pm S_2)/2\) where
$$\begin{aligned} (S_2 f)(t):=\frac{1}{\pi i}\int \limits _0^\infty \left( \frac{t}{\tau }\right) ^{1/2-1/p}\frac{f(\tau )}{\tau -t}\,d\tau , \quad t\in \mathbb {R}_+, \end{aligned}$$
is the weighted Cauchy singular integral operator. We prove that if \(\alpha ',\beta '\) and \(c,d\) are continuous on \(\mathbb {R}_+\) and slowly oscillating at \(0\) and \(\infty \), and
$$\begin{aligned} \limsup _{t\rightarrow s}|c(t)|<1, \quad \limsup _{t\rightarrow s}|d(t)|<1, \quad s\in \{0,\infty \}, \end{aligned}$$
then the operator \((I-cU_\alpha )P_2^++(I-dU_\beta )P_2^-\) is Fredholm on \(L^p(\mathbb {R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号