首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let \(X=G/P\) be a real projective quadric, where \(G=O(p,\,q)\) and P is a parabolic subgroup of G. Let \((\pi _{\lambda ,\epsilon },\, \mathcal H_{\lambda ,\epsilon })_{ (\lambda ,\epsilon )\in {\mathbb {C}}\times \{\pm \}}\) be the family of (smooth) representations of G induced from the characters of P. For \((\lambda ,\, \epsilon ),\, (\mu ,\, \eta )\in {\mathbb {C}}\times \{\pm \},\) a differential operator \(\mathbf D_{(\mu ,\eta )}^\mathrm{reg}\) on \(X\times X,\) acting G-covariantly from \({\mathcal {H}}_{\lambda ,\epsilon } \otimes {\mathcal {H}}_{\mu , \eta }\) into \({\mathcal {H}}_{\lambda +1,-\epsilon } \otimes {\mathcal {H}}_{\mu +1, -\eta }\) is constructed.  相似文献   

2.
Let k be a commutative ring, \(\mathcal {A}\) and \(\mathcal {B}\) – two k-linear categories with an action of a group G. We introduce the notion of a standard G-equivalence from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\), where \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) is the homotopy category of finitely generated projective \(\mathcal {A}\)-complexes. We construct a map from the set of standard G-equivalences to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) and a map from the set of standard G-equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {B}/G)\) to \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {A}/G)\), where \(\mathcal {A}/G\) denotes the orbit category. We investigate the properties of these maps and apply our results to the case where \(\mathcal {A}=\mathcal {B}=R\) is a Frobenius k-algebra and G is the cyclic group generated by its Nakayama automorphism ν. We apply this technique to obtain the generating set of the derived Picard group of a Frobenius Nakayama algebra over an algebraically closed field.  相似文献   

3.
Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.  相似文献   

4.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

5.
Given a finite group G, we say that G has property \(\mathcal P_{k}\) if every set of k distinct irreducible character degrees of G is setwise relatively prime. In this paper, we show that if G is a finite nonsolvable group satisfying \(\mathcal P_{4}, \)then G has at most 8 distinct character degrees. Combining with work of D. Benjamin on finite solvable groups, we deduce that a finite group G has at most 9 distinct character degrees if G has property \(\mathcal P_{4}\) and this bound is sharp.  相似文献   

6.
We show that symmetric block designs \({\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})\) can be embedded in a suitable commutative group \({\mathfrak {G}}_{\mathcal {D}}\) in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of \({\mathrm {PG}}(d,2)\) and \({\mathrm {AG}}(d,3)\). In both cases, the blocks can be characterized as the only k-subsets of \(\mathcal {P}\) whose elements sum to zero. It follows that the group of automorphisms of any such design \(\mathcal {D}\) is the group of automorphisms of \({\mathfrak {G}}_\mathcal {D}\) that leave \(\mathcal {P}\) invariant. In some special cases, the group \({\mathfrak {G}}_\mathcal {D}\) can be determined uniquely by the parameters of \(\mathcal {D}\). For instance, if \(\mathcal {D}\) is a 2-\((v,k,\lambda )\) symmetric design of prime order p not dividing k, then \({\mathfrak {G}}_\mathcal {D}\) is (essentially) isomorphic to \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\), and the embedding of the design in the group can be described explicitly. Moreover, in this case, the blocks of \(\mathcal {B}\) can be characterized also as the v intersections of \(\mathcal {P}\) with v suitable hyperplanes of \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\).  相似文献   

7.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

8.
Demet Taylan 《Order》2016,33(3):459-476
We generalize some homotopy calculation techniques such as splittings and matching trees that are introduced for the computations in the case of the independence complexes of graphs to arbitrary simplicial complexes. We then exemplify their efficiency on some simplicial complexes, the devoid complexes of graphs, \(\mathcal {D}(G;\mathcal {F})\) whose faces are vertex subsets of G that induce \(\mathcal {F}\)-free subgraphs, where G is a multigraph and \(\mathcal {F}\) is a family of multigraphs. Additionally, we compute the homotopy type of dominance complexes of chordal graphs.  相似文献   

9.
Let G be the group of projectivities stabilizing a unital \(\mathcal{U}\) in \(\mathop{\mathrm{PG}}(2,q^{2})\) and let A,B be two distinct points of \(\mathcal{U}\). In this paper we prove that, if G has an elation group of order q with center A and a group of projectivities stabilizing both A and B of order a divisor of q?1 greater than \(2(\sqrt{q}-1)\), then \(\mathcal{U}\) is an ovoidal Buekenhout–Metz unital. From this result two group theoretic characterizations of orthogonal Buekenhout–Metz unitals are given.  相似文献   

10.
For any grading by an abelian group G on the exceptional simple Lie algebra \(\mathcal {L}\) of type E 6 or E 7 over an algebraically closed field of characteristic zero, we compute the graded Brauer invariants of simple finite-dimensional modules, thus completing the computation of these invariants for simple finite-dimensional Lie algebras. This yields the classification of finite-dimensional G-graded simple \(\mathcal {L}\)-modules, as well as necessary and sufficient conditions for a finite-dimensional \(\mathcal {L}\)-module to admit a G-grading compatible with the given G-grading on \(\mathcal {L}\).  相似文献   

11.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

12.
Consider the restriction of an irreducible unitary representation π of a Lie group G to its subgroup H. Kirillov’s revolutionary idea on the orbit method suggests that the multiplicity of an irreducible H-module ν occurring in the restriction π|H could be read from the coadjoint action of H on \(\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H})\), provided π and ν are ‘geometric quantizations’ of a G-coadjoint orbit \(\mathcal {O}^{G}\) and an H-coadjoint orbit \(\mathcal {O}^{H}\), respectively, where \(\text {pr} \colon \sqrt {-1}\mathfrak {g}^{\ast } \to \sqrt {-1}\mathfrak {h}^{\ast }\) is the projection dual to the inclusion \(\mathfrak {h} \subset \mathfrak {g}\) of Lie algebras. Such results were previously established by Kirillov, Corwin and Greenleaf for nilpotent Lie groups. In this article, we highlight specific elliptic orbits \(\mathcal {O}^{G}\) of a semisimple Lie group G corresponding to highest weight modules of scalar type. We prove that the Corwin–Greenleaf number \(\sharp (\mathcal {O}^{G} \cap \text {pr}^{-1}({\mathcal {O}}^{H}))/H\) is either zero or one for any H-coadjoint orbit \(\mathcal {O}^{H}\), whenever (G,H) is a symmetric pair of holomorphic type. Furthermore, we determine the coadjoint orbits \(\mathcal {O}^{H}\) with nonzero Corwin–Greenleaf number. Our results coincide with the prediction of the orbit philosophy, and can be seen as ‘classical limits’ of the multiplicity-free branching laws of holomorphic discrete series representations (Kobayashi [Progr. Math. 2007]).  相似文献   

13.
The Cartan scheme \(\mathcal{X}\) of a finite group G with a (BN)-pair is defined to be the coherent configuration associated with the action of G on the right cosets of the Cartan subgroup \(B\cap N\) by right multiplication. It is proved that if G is a simple group of Lie type, then asymptotically the coherent configuration \(\mathcal{X}\) is 2-separable, i.e., the array of 2-dimensional intersection numbers determines \(\mathcal{X}\) up to isomorphism. It is also proved that in this case, the base number of \(\mathcal{X}\) equals 2. This enables us to construct a polynomial-time algorithm for recognizing Cartan schemes when the rank of G and the order of the underlying field are sufficiently large. One of the key points in the proof is a new sufficient condition for an arbitrary homogeneous coherent configuration to be 2-separable.  相似文献   

14.
A cycle C in a graph G is dominating if every edge of G is incident with at least one vertex of C. For a set \(\mathcal {H}\) of connected graphs, a graph G is said to be \(\mathcal {H}\)-free if G does not contain any member of \(\mathcal {H}\) as an induced subgraph. When \(|\mathcal {H}| = 2, \mathcal {H}\) is called a forbidden pair. In this paper, we investigate the characterization of the class of the forbidden pairs guaranteeing the existence of a dominating cycle and show the following two results: (i) Every 2-connected \(\{P_{5}, K_{4}^{-}\}\)-free graph contains a longest cycle which is a dominating cycle. (ii) Every 2-connected \(\{P_{5}, W^{*}\}\)-free graph contains a longest cycle which is a dominating cycle. Here \(P_{5}\) is the path of order \(5, K_{4}^{-}\) is the graph obtained from the complete graph of order 4 by removing one edge, and \(W^{*}\) is the graph obtained from two triangles and an edge by identifying one vertex in each.  相似文献   

15.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

16.
The set \(\mathcal {D}_n\) of all difunctional relations on an n element set is an inverse semigroup under a variation of the usual composition operation. We solve an open problem of Kudryavtseva and Maltcev (Publ Math Debrecen 78(2):253–282, 2011), which asks: What is the rank (smallest size of a generating set) of \(\mathcal {D}_n\)? Specifically, we show that the rank of \(\mathcal {D}_n\) is \(B(n)+n\), where B(n) is the nth Bell number. We also give the rank of an arbitrary ideal of \(\mathcal {D}_n\). Although \(\mathcal {D}_n\) bears many similarities with families such as the full transformation semigroups and symmetric inverse semigroups (all contain the symmetric group and have a chain of \(\mathscr {J}\)-classes), we note that the fast growth of \({\text {rank}}(\mathcal {D}_n)\) as a function of n is a property not shared with these other families.  相似文献   

17.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

18.
We consider smooth moduli spaces of semistable vector bundles of fixed rank and determinant on a compact Riemann surface X of genus at least 3. The choice of a Poincaré bundle for such a moduli space M induces an isomorphism between X and a component of the moduli space of semistable sheaves over M. We prove that \(\dim H^0(M,\, \text {End}({\mathcal {E}})\otimes TM)\,=\, 1\) for any vector bundle \(\mathcal {E}\) on M coming from this component. Furthermore, there are no nonzero integrable co-Higgs fields on \(\mathcal {E}\).  相似文献   

19.
For P ? \(\mathbb{F}_2 \)[z] with P(0) = 1 and deg(P) ≥ 1, let \(\mathcal{A}\) = \(\mathcal{A}\)(P) (cf. [4], [5], [13]) be the unique subset of ? such that Σ n≥0 p(\(\mathcal{A}\), n)z n P(z) (mod 2), where p(\(\mathcal{A}\), n) is the number of partitions of n with parts in \(\mathcal{A}\). Let p be an odd prime and P ? \(\mathbb{F}_2 \)[z] be some irreducible polynomial of order p, i.e., p is the smallest positive integer such that P(z) divides 1 + z p in \(\mathbb{F}_2 \)[z]. In this paper, we prove that if m is an odd positive integer, the elements of \(\mathcal{A}\) = \(\mathcal{A}\)(P) of the form 2 k m are determined by the 2-adic expansion of some root of a polynomial with integer coefficients. This extends a result of F. Ben Saïd and J.-L. Nicolas [6] to all primes p.  相似文献   

20.
In this note we confirm a conjecture raised by Benjamini et al. (SIAM J Discrete Math 28(2):767–785, 2014) on the acquaintance time of graphs, proving that for all graphs G with n vertices it holds that \(\mathcal {AC}(G) = O(n^{3/2})\). This is done by proving that for all graphs G with n vertices and maximum degree \(\varDelta \) it holds that \(\mathcal {AC}(G) \le 20 \varDelta n\). Combining this with the bound \(\mathcal {AC}(G) \le O(n^2/\varDelta )\) from Benjamini et al. (SIAM J Discrete Math 28(2):767–785, 2014) gives the uniform upper bound of \(O(n^{3/2})\) for all n-vertex graphs. This bound is tight up to a multiplicative constant. We also prove that for the n-vertex path \(P_n\) it holds that \(\mathcal {AC}(P_n)=n-2\). In addition we show that the barbell graph \(B_n\) consisting of two cliques of sizes \({\lceil n/2\rceil }\) and \({\lfloor n/2\rfloor }\) connected by a single edge also has \(\mathcal {AC}(B_n) = n-2\). This shows that it is possible to add \(\varOmega (n^2\)) edges a graph without changing its \(\mathcal {AC}\) value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号