首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated dielectric relaxation of a tri-propylene glycol system under high compression. By increasing temperature and pressure we observed that a new relaxation process emerges from the low frequency tail of the structural peak. This new peak starts to be visible at about 0.5 GPa and becomes clearly evident at 1.7 GPa. However, this additional peak merges again with the structural one as the glass transition is approached, since it has a weaker temperature dependence. This finding enriches the relaxation scenario of molecular glass formers confirming that the application of very high hydrostatic pressure can favor the detection of new relaxation or otherwise unresolved processes in supercooled liquid systems.  相似文献   

3.
We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 diffusion pump fluid), polyphenyl ether (Santovac 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under identical thermal conditions close to the glass transition temperature. The liquids span four orders of magnitude in dielectric relaxation strength and include liquids with and without Johari-Goldstein beta relaxation. The shear mechanical data are obtained by the piezoelectric shear modulus gauge method giving a large frequency span (10(-3)-10(4.5) Hz). This allows us to resolve the shear mechanical Johari-Goldstein beta peak in the equilibrium DHIQ liquid. We moreover report a signature (a pronounced rise in the shear mechanical loss at frequencies above the alpha relaxation) of a Johari-Goldstein beta relaxation in the shear mechanical spectra for all the liquids which show a beta relaxation in the dielectric spectrum. It is found that both the alpha and beta loss peaks are shifted to higher frequencies in the shear mechanical spectrum compared to the dielectric spectrum. It is in both the shear and dielectric responses found that liquids obeying time-temperature superposition also have a high-frequency power law with exponent close to -12. It is moreover seen that the less temperature dependent the spectral shape is, the closer it is to the universal -12 power-law behavior. The deviation from this universal power-law behavior and the temperature dependencies of the spectral shape are rationalized as coming from interactions between the alpha and beta relaxations.  相似文献   

4.
Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature T(g), the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the alpha relaxation and an additional faster gamma process at the megahertz frequency range. By decreasing temperature below T(g) at ambient pressure or by elevating pressure above P(g), the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary beta-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the beta-relaxation time tau(beta) to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary beta relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the beta relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their gamma relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and gamma relaxation are further demonstrated by the nearly perfect superposition of the alpha-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same alpha-peak frequency), but not the gamma-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the beta-loss peak shifts to lower frequencies, but not the gamma relaxation. Basing on these experimental facts, the faster gamma relaxation is a local intramolecular process involving a side group and the slower beta relaxation mimics the structural alpha relaxation in behavior, involves the entire molecule and satisfies the criteria for being the Johari-Goldstein beta relaxation. Analysis and interpretation of the spectra utilizing the coupling model further demonstrate that the excess wings seen in the equilibrium liquid states of these two isomers are their genuine Johari-Goldstein beta relaxation.  相似文献   

5.
The dielectric loss measurements of different polystyrenes (fractions and blends) with different molecular weights (M n 2000–125000 g/mol) were carried out in the frequency range 10–2–106 Hz and the temperature range of the glass process (60°–135°C, depending on the molecular weight). The measurements of the pure fractions showed that the half-width of the glass relaxation process of the different polystyrenes can be correlated by a straight line, if they are plotted versus the relaxation frequency maxima of the glass process, regardless of the difference in both their molecular weight and glass transition temperature. Moreover, the fine structure of the shape of the glass process of polystyrenes with different molecular weights was found to be the same when the glass process appears at the same relaxation frequency range. The addition of oligostyrenes or low molecular <10% wt additives to the high molecular weight polystyrene did not influence the shape of the glass process. The calorimetric glass transition temperature of polystyrene was found to be only dependent on the number average molecular weight as well as on the number of end groups, but not on the molecular weight distribution. The obtained experimental results were correlated to develop a method for the estimation of the dielectric relaxation characteristics (relaxation frequency as well as the shape parameters) of the glass process of plasticized polystyrenes based on the calorimetric glass transition temperature. A method for the analysis of the dielectric relaxation curves of mixtures of label and polymer is suggested.  相似文献   

6.
We discuss the relaxation dynamics of glycerol-water mixtures, as studied by dielectric spectroscopy in the frequency range from 1 Hz to 250 MHz and at temperatures between 173 and 323 K. The experimental results obtained for the glycerol-rich mixtures suggest that the main dielectric relaxation process, as well as the so-called high-frequency "excess wing" (EW) and dc conductivity, follow the same temperature dependence. This result indicates that all of these processes are induced by the same molecular origin. A new phenomenological function is proposed to describe the whole dielectric spectrum in the covered frequency range, and some possible mechanisms of dielectric behaviors through the dc conductivity, the main relaxation process, and the EW are discussed.  相似文献   

7.
Dielectric properties of four methacrylate polymers (methyl, ethyl, n-butyl and n-octyl) were studied in the frequency range 0.0001 cps–300 kcps at temperatures above and below the glass transition temperature and at various pressures up to 2500 atm. At temperatures well above Tg a single relaxation peak (α′ peak) was observed in the case of the higher n-alkyl methacrylates. However, this peak was split into two peaks, α and β, with decrease in temperature or increase in pressure. The molecular motions corresponding to the α and the β relaxation processes are the micro-Brownian motions of amorphous main chains and of flexible side chains, respectively. From the temperature and the pressure dependence of the average dielectric relaxation time of these polymers the single relaxation process (the α′ process) was attributed to the micro-Brownian motion of the main chain coupled with that of the side chain. The effects of temperature and pressure on the d.c. conductivity of these polymers were also studied.  相似文献   

8.
Three nanosized polyaniline (PAn) powders doped with ionic liquid and dodecyl benzene sulfonic acid (DBSA) or hydrochloric acid have been prepared for the first time in an ionic liquid-water emulsion system. The oil-phase ionic liquid is used as both a monomer solvent and doped counterion. The effects of different counterions on the properties (molecular weight, electrical conductivity, glass transition temperature, electrochemical activity) of PAn are investigated. PAn codoped with 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid and DBSA shows the highest molecular weight (81 104 g mol?1), the highest electrical conductivity (1.85 S cm?1), the lowest glass transition temperature (181°C) and the highest redox reaction current density; PAn doped with an ionic liquid only exhibits the lowest conductivity (0.0018 S cm?1) and a lower redox reaction current density. PAn codoped with ionic liquid and HCl shows higher conductivity. They also exhibit good electrochemical stability and charge-discharge performance. These indicate that codoping of different counterions under acidic conditions could improve the degree of oxidation and doping ratio of PAn and could result in high electrical conductivity and good electrochemical properties.  相似文献   

9.
We propose a dynamic structure of coupled dynamic molecular strings for supercooled small polar molecule liquids and accordingly we obtain the Hamiltonian of the rotational degrees of freedom of the system. From the Hamiltonian, the strongly correlated supercooled polar liquid state is renormalized to a normal superdipole liquid state. This scenario describes the following main features of the primary or alpha-relaxation dynamics in supercooled polar liquids: (1) the average relaxation time evolves from a high temperature Arrhenius to a low temperature non-Arrhenius or super-Arrhenius behavior; (2) the relaxation function crosses over from the high temperature exponential to low temperature nonexponential form; and (3) the temperature dependence of the relaxation strength shows non-Curie features. According to the present model, the crossover phenomena of the first two characteristics arise from the transition between the superdipole gas and the superdipole liquid. The model predictions are quantitatively compared with the experimental results of glycerol, a typical glass former.  相似文献   

10.
In this paper, we investigate the effect of pressure on the molecular dynamics of protic ionic liquid lidocaine hydrochloride, a commonly used pharmaceutical, by means of dielectric spectroscopy and pressure-temperature-volume methods. We observed that near T(g) the pressure dependence of conductivity relaxation times reveals a peculiar behavior, which can be treated as a manifestation of decoupling between ion migration and structural relaxation times. Moreover, we discuss the validity of thermodynamic scaling in lidocaine HCl. We also employed the temperature-volume Avramov model to determine the value of pressure coefficient of glass transition temperature, dT(g)/dP|(P = 0.1). Finally, we investigate the role of thermal and density fluctuations in controlling of molecular dynamics of the examined compound.  相似文献   

11.
The authors investigate the dynamics of a series of room temperature ionic liquids, based on the same 1-butyl-3-methylimidazolium cation with different anions, by means of broadband (10(-6)-10(9) Hz) dielectric spectroscopy and depolarized light scattering in the temperature range from 400 K down to 35 K. Typical ionic conductivity is observed above the glass transition temperature Tg. Below Tg the authors detect relaxation processes that exhibit characteristics of secondary relaxations, as typically observed in molecular glasses. At high temperatures, the characteristic times of cation reorientation, deduced from the light scattering data, are approximately equal to the electric modulus relaxation times related to ionic conductivity. In the supercooled regime and close to Tg, the authors observe decoupling of conductivity from structural relaxation. Overall, room temperature ionic liquids exhibit typical glass transition dynamics, apparently unaltered by Coulomb interactions.  相似文献   

12.
The authors have reported the electrical conductivity and the conductivity relaxation in mixed alkali tellurite glasses of compositions of 70TeO2-xNa2O-(30-x)Li2O in the frequency range from 10 Hz to 2 MHz and in the temperature range from room temperature to just below the glass transition temperature. They have analyzed the relaxation data in the framework of different models. They have observed the mixed alkali effect in the dc and ac conductivities, the crossover frequency, and the conductivity relaxation frequency as well as in their respective activation energies in these glasses. They have also observed the mixed alkali effect in the decoupling index. The scaling property of the modulus spectra of these mixed alkali glasses shows that the conductivity relaxation in the mixed alkali tellurite glasses is independent of temperature but depends on the glass compositions.  相似文献   

13.
We report a thorough characterization of the dielectric relaxation behavior and the ionic conductivity in the plastic-crystalline mixture of 60% succinonitrile and 40% glutaronitrile. The plastic phase can be easily supercooled and the relaxational behavior is investigated by broadband dielectric spectroscopy in the liquid, plastic crystalline, and glassy crystal phases. The α-relaxation found in the spectra is characterized in detail. A well-pronounced secondary and faint indications for a third relaxation process were found. The latter most likely is of Johari-Goldstein type. From the temperature dependence of the α-relaxation time, a fragility parameter of 62 was determined. Thus, together with Freon112, this material stands out among all other plastic crystals by being a relatively fragile glass former. This finding provides strong support for an energy-landscape related explanation of the fragility of glass formers. In addition, unusually strong conductivity contributions were detected in the spectra exhibiting the typical features of ionic charge transport making this material a good basis for solid-state electrolytes.  相似文献   

14.
We report a novel method of detecting the glass --> liquid transition at high pressures, which comprises measuring the relative volume change incurred upon heating glassy samples into the liquid state. We show data on glycerol in the pressure range 0.050-1.00 GPa to demonstrate the viability of the method. The reversible glass --> liquid transition is observed by means of a kink in the relative volume change on heating the sample isobarically, which is attributed to the glass --> liquid transition temperature Tg. This kink can only be observed in the second and subsequent heating cycles since it is superposed by a compaction in the first heating cycle. The isobaric thermal expansivity beta, which is closely related to the first derivative of this curve, shows the features expected for a glass --> liquid transition, including a sharp rise of beta(glass) in a narrow temperature interval to beta(viscous liquid) and an accompanying overshoot effect. Both Tg and the size of the overshoot effect vary in accordance with theory upon changing the ratio of cooling to heating rates. From the shape of this curve the onset, inflection, overshoot peak, and endpoint of the glass --> liquid transition can be extracted, which can be employed to calculate the reduced glass transition width as a measure for the fragility of the liquid. Comparison with literature data allows quantifying the accuracy of the liquid's thermal expansivity beta to be at least +/-10%, while the error in beta is significantly larger for the expansivity of the glassy state. The reproducibility of the glass --> liquid transition temperature Tg is better than +/-2 K. Our glycerol data confirms literature studies showing a nonlinear increase of Tg with increasing pressure (approximately 35 K/GPa on average), which is accompanied by an increase in fragility.  相似文献   

15.
The dipolar relaxation mechanisms in a side chain liquid crystalline polysiloxane have been studied by Thermally Stimulated Discharge Currents (t.s.d.c.) and by Dielectric Relaxation Spectroscopy (d.r.s.). The study was carried out in a wide temperature range covering the vitreous phase, the glass transition region and the liquid crystalline phase. Different discharges were observed in the t.s.d.c. spectrum of this polymer which were attributed, in the order of increasing temperature, to local non-cooperative motions probably involving internal rotations in the spacer and in the alkyl group of the mesogenic moiety, to the Brownian motions of the main chain associated with the glass transition and to motions involving reorientations of the components of the dipole moment of the mesogenic side group in the liquid crystalline phase. The dielectric relaxation spectrum, on the other hand, is dominated by two relaxation processes both of which are above the measured glass transition temperature and shows also a much broader and less intense relaxation below the glass transition temperature which is attributable to local motions along the side groups. It is emphasized that the comparison between the d.r.s. and the t.s.d.c. results is not straightforward and that more research work is needed in order to enable a clear attribution of the relaxation processes at the molecular level, and an unambiguous interpretation of the results obtained by the two techniques.  相似文献   

16.
A complete Deuterium NMR study performed on partially deuterated liquid crystalline carbosilane dendrimer is here reported. The dendrimer under investigation shows a SmA phase in a large temperature range from 381 to 293 K, and its mesophasic properties have been previously determined. However, in this work the occurrence of a biphasic region between the isotropic and SmA phases has been put in evidence. The orientational order of the dendrimer, labeled on its lateral mesogenic units, is here evaluated in the whole temperature range by means of (2)H NMR, revealing a peculiar trend at low temperatures (T < 326 K). This aspect has been further investigated by a detailed analysis of the (2)H NMR spectral features, such as the quadrupolar splitting, the line shape, and the line-width, as a function of temperature. In the context of a detailed NMR analysis, relaxation times (T(1) and T(2)) have also been measured, pointing out a slowing down of the dynamics by decreasing the temperature, which determines from one side the spectral changes observed in the NMR spectra, on the other the observation of a minimum in the T(1).  相似文献   

17.
Broadband dielectric spectroscopy was used to study the relaxation dynamics in bis-5-hydroxypentylphthalate (BHPP) under both isobaric and isothermal conditions. The relaxation dynamics exhibit complex behavior, arising from hydrogen bonding in the BHPP. At ambient pressure above the glass transition temperature T(g), the dielectric spectrum shows a broad structural relaxation peak with a prominent excess wing toward higher frequencies. As temperature is decreased below T(g), the excess wing transforms into two distinct peaks, both having Arrhenius behavior with activation energies equal to 58.8 and 32.6 kJmol for slower (beta) and faster (gamma) processes, respectively. Furthermore, the relaxation times for the beta process increase with increasing pressure, whereas the faster gamma relaxation is practically insensitive to pressure changes. Analysis of the properties of these secondary relaxations suggests that the beta peak can be identified as an intermolecular Johari-Goldstein (JG) process. However, its separation in frequency from the alpha relaxation, and both its activation energy and activation volume, differ substantially from values calculated from the breadth of the structural relaxation peak. Thus, the dynamics of BHPP appear to be an exception to the usual correlation between the respective properties of the structural and the JG secondary relaxations.  相似文献   

18.
We investigated the features of the glass transition relaxation of two room temperature ionic liquids using DSC. An important observation was that the heat capacity jump, that is the signature of the glass transition relaxation, shows a particularly strong value in this type of new and promising materials, candidates for a range of applications. This suggests a high degree of molecular mobility in the supercooled liquid state. The study of the influence of the heating rate on the temperature location of the glass transition signal, allowed the determination of the activation energy at the glass transition temperature, and the calculation of the fragility index of these two ionic glass-formers. It was concluded that this kind of materials belong to the class of relatively strong glass-forming systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Combining dielectric spectroscopy and neutron scattering data for hydrated lysozyme powders, we were able to identify several relaxation processes and follow protein dynamics at different hydration levels over a broad frequency and temperature range. We ascribe the main dielectric process to protein's structural relaxation coupled to hydration water and the slowest dielectric process to a larger scale protein's motions. Both relaxations exhibit a smooth, slightly super-Arrhenius temperature dependence between 300 and 180 K. The temperature dependence of the slowest process follows the main dielectric relaxation, emphasizing that the same friction mechanism might control both processes. No signs of a proposed sharp fragile-to-strong crossover at T approximately 220 K are observed in temperature dependences of these processes. Both processes show strong dependence on hydration: the main dielectric process slows down by six orders with a decrease in hydration from h approximately 0.37 (grams of water per grams of protein) to h approximately 0.05. The slowest process shows even stronger dependence on hydration. The third (fastest) dielectric relaxation process has been detected only in samples with high hydration ( h approximately 0.3 and higher). We ascribe it to a secondary relaxation of hydration water. The mechanism of the protein dynamic transition and a general picture of the protein dynamics are discussed.  相似文献   

20.
Dielectric spectroscopy was carried out to measure the α‐relaxation (local segmental motion) and the higher frequency, secondary relaxation (β‐mode) in 1,4‐polybutadiene, both neat and containing a nonpolar diluent, mineral oil. The α‐relaxation shifted to lower frequencies (antiplasticization) in the presence of the diluent, suggesting the glass temperature of the latter is higher than the Tg of the polymer (i.e., >187K). The Tg of neat mineral oil cannot be determined directly, due to crystallization. While the diluent increased the magnitude of the α‐relaxation times, it had no effect on the β‐relaxation. Moreover, neither the shape of the α‐relaxation function nor its temperature dependence was influenced by the diluent. From this we conclude that the main effect of the mineral oil was to increase the local friction, without changing the degree of intermolecular cooperativity of the molecular motions. We also find that near the glass temperature, there is rough agreement between the time scale of the secondary relaxation process and the value of a noncooperative relaxation time estimated from theory. This approximate correspondence between the two relaxation times also holds for 1,2 polybutadiene. However, the β‐process cannot be identified with the noncooperative α‐relaxation, and the relationship between them is not quantitative. © 2000 John Wiley & Sons, Inc.* J Polym Sci B: Polym Phys 38: 1841–1847, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号