首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
A highly sensitive amperometric biosensor for the detection of organophosphate pesticides (OPs) is developed. The biosensor was fabricated by immobilized acetylcholinesterase (AChE) on manganese (III) meso‐tetraphenylporphyrin (MnTPP) nanoparticles (NPs)‐modified glassy carbon (GC) electrode. The MnTPP NPs used in this article were synthesized by mixing solvent techniques. AChE enzyme was immobilized on the MnTPP NPs surface by conjugated with chitosan (CHIT). The electrocatalytic activity of MnTPP NPs led to a greatly improved performance for thiocholine (TCh) product detection. The developed AChE‐CHIT/MnTPPNP/GC biosensor integrated with a flow‐injection analysis (FIA) system was used to monitor trichlorfon (typical OP). A wide linear inhibition response for trichlorfon is observed in the range of 1.0 nM–1.0 mM, corresponding to 10–83% inhibition for AChE with a detection limit of 0.5 nM.  相似文献   

2.
Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the ‘active site’ of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self‐assembling AChE to graphene nanosheet (GN)‐gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.  相似文献   

3.
A sensitive electrochemical stripping voltammetric method for analyzing organophosphate (OP) compounds was developed based on solid-phase extraction (SPE) at zirconia (ZrO2) nanoparticles modified electrode. ZrO2 nanoparticles were proved as a new sorbent for SPE of OP pesticides. Because of the strong affinity of ZrO2 for the phosphoric group, nitroaromatic OPs can strongly bind to the ZrO2 nanoparticle surface. The combination of SPE with square-wave voltammetry (SWV) provided a fast, sensitive, and selective electrochemical method for nitroaromatic OP compounds using methyl parathion (MP) as a model. The stripping response was highly linear over the MP range of 0.003–2.0 μg/mL, with a detection limit of 0.001 μg/mL. The fast extraction ability of ZrO2 nanoparticles makes it promising sorbent for various solid-phase extractions.  相似文献   

4.
合成了金掺杂的四氧化三铁纳米粒子(Au-Fe3O4), 以壳聚糖为交联剂, 制备了电流型乙酰胆碱酯酶(AChE)生物传感器, 并将其应用于有机磷农药(OPs)的检测. 实验表明, Au-Fe3O4纳米粒子具有良好的生物兼容性, 能够有效地促进电子传递, 修饰了Au-Fe3O4纳米粒子的酶传感器, 响应速度快, 检测灵敏度高, 稳定性好; 固定在传感器上的乙酰胆碱酯酶有良好的酶动力学响应, 其表观米氏常数( )为10.3 mmol/L. 利用有机磷农药对乙酰胆碱酯酶的抑制作用, 以硫代乙酰胆碱(ATCh)为底物, 对有机磷农药敌敌畏进行了检测, 检测限达到4.0×10-13 mol/L.  相似文献   

5.
A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides. Here we describe a new method to obtain low detection limits via employing external reagents. Among candidate compounds, n-octylphosphonic acid (n-Octyl-PA) displays assistant effect to enhance AChE inhibition by OP pesticides. In presence of n-Octyl-PA, the percentages of AChE inhibition still kept correlation with OP pesticide concentrations. The detection limits were improved significantly even by 102–103 folds in comparison with conventional enzyme-inhibited methods. Different detection limits of OP pesticides with different toxicities were as low as 0.005 μg L−1 for high toxic pesticides and 0.05 μg L−1 for low toxic pesticides. Besides, the reliability of results from this method to analyze cowpea samples had been demonstrated by liquid-chromatography tandem mass spectrometry (LC–MS/MS). The application of this commercial available assistant agent shows great promise to detect OP compounds in complicated biological matrix and broadens the mind for high sensitivity detection of OP pesticide residues in agricultural products.  相似文献   

6.
Qu B  Chu X  Shen G  Yu R 《Talanta》2008,76(4):785-790
A novel electrochemical immunosensor using functionalized silica nanoparticles (Si NPs) as protein tracer has been developed for the detection of prostate specific antigen (PSA) in human serum. The immunosensor was carried out based on a heterogeneous sandwich procedure. The PSA capture antibody was immobilized on the gold electrode via glutaraldehyde crosslink. After reaction with the antigen in human serum, Si NPs colabeled with detection antibody and alkaline phosphatase (ALP) was sandwiched to form the immunocomplex on the gold electrode. ALP carried by Si NPs convert nonelectroactive substrate into the reducing agent and the latter, in turn, reduce metal ions to form electroactive metallic product on the electrode. Linear sweep voltammetry (LSV) was used to quantify the amount of the deposited silver and give the analytical signal for PSA. The parameters including the concentration of the ALP used to functionalize the Si NPs and the enzyme catalytic reaction time have been studied in detail and optimized. Under the optimum conditions of immunoreaction and electrochemical detection, the electrochemical immunosensor was able to realize a reliable determination of PSA in the range of 1–35 ng/mL with a detection limit of 0.76 ng/mL. For six human serum samples, the results performed with the electrochemical immunosensor were in good agreement with those obtained by chemiluminescent microparticle immunoassay (CMIA), indicating that the electrochemical immunosensor could satisfy the need of practical sample detection.  相似文献   

7.
Accurate detection of cancer antigen 72-4 (CA72-4), a tumor-associated glycoprotein, is of great significance for gastric cancer diagnosis and immunotherapy monitoring. Modification of noble metal nanoparticles on transition metal dichalcogenides can significantly enhance functions, such as electron transport. Molybdenum disulfide gold nanoparticles nanocomposites (MoS2-Au NPs) were prepared in this study and a series of characterization studies were carried out. In addition, a label-free, highly sensitive electrochemical immunosensor molybdenum disulfide -Au nanoparticles/Glassy carbon electrode (MoS2-Au NPs/GCE) was also prepared and used for the detection of CA72-4. The electrochemical performance of the immunosensor was characterized by electrochemical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results indicated that better MoS2-Au NPs nanomaterials have been synthesized, and the prepared electrochemical immunosensor, MoS2-Au NPs/GCE, showed excellent electrochemical performance. The sensor exhibited high detection sensitivity under optimal conditions, including an incubation time of 30 min, an incubation temperature of 25 °C, and a pH of 7.0. The electrochemical immunosensor also had a low detection limit of 2.0 × 10?5 U/mL (S/N = 3) in a concentration range of 0.001–200 U/mL, with good selectivity, stability, and repeatability. In conclusion, this study provided a theoretical basis for the highly sensitive detection of tumor markers in clinical biological samples.  相似文献   

8.
A silver nanocomposite was one‐step synthesized in chitosan solution and used to prepare an immunosensor with the aid of gold nanoparticles (Au NPs) assembly. The Ag NPs at the immunosensor exhibited sensitive electrochemical stripping signal in KCl solution. After a sandwich immunoreaction, the current response of the immunosensor decreased due to the formation of antibody‐antigen immunocomplex on its surface, which was greatly amplified by the captured silica nanoprobes and thus enabled an ultrasensitive electrochemical immunoassay method. This method showed excellent analytical performance for human IgG measurement including wide linear range, low detection limit, cheap cost, satisfactory reproducibility and stability.  相似文献   

9.
A novel immunosensor has been developed by self‐assembling Au NPs onto a ferrocene‐branched chitosan/multiwalled carbon nanotubes (CS‐Fc/MWCNTs) modified electrode for the sensitive determination of hepatitis B surface antigen (HBsAg). The formation of CS‐Fc effectively avoids the leakage of Fc and retains its electrochemical activity. Incorporation of MWCNTs and Au NPs into CS‐Fc further increases the electrochemical active Fc in the CS films and provides interactive sites for the immobilization of HBsAb. The morphologies and electrochemistry of the formed biofilm were investigated by using scanning electron microscopy and electrochemical techniques. The immunosensor exhibits a specific response to HBsAg in the range of 1.0–420 ng mL?1. Excellent analytical performance, fabrication reproducibility and operational stability of the proposed immunosensor indicated its promising application in clinical diagnostics.  相似文献   

10.
A multiplexed electrochemical immunoassay method was developed for simultaneous ultrasensitive measurement of tumor markers based on electrochemical stripping analysis of silver nanoparticles (Ag NPs). The Ag NPs were deposited on a disposable immunosensor array with a reduction reaction catalyzed by nanogold labels. The immunosensor array was prepared by covalently immobilizing capture antibodies on chitosan modified screen-printed carbon electrodes. Through a sandwich-type immunoreaction, antibody-functionalized Au NPs were captured onto immunosensor surface to induce the silver deposition from a silver enhancer solution. The deposited Ag NPs could be directly measured by anodic stripping analysis in KCl solution. The catalytic deposition enhanced the analytical sensitivity for detection of protein markers. The interference of dissolved oxygen could be avoided as the detection was performed with positive stripping potential range. Using carcinoembryonic antigen and α-fetoprotein as model analytes, the proposed multiplexed immunoassay method showed wide linear ranges of three orders of magnitude with the detection limits down to 3.5 and 3.9 pg mL−1, respectively. The localized silver deposition, as well as the stripping detection process, eliminated completely the electrochemical cross talk between adjacent immunosensors. The immunosensor array exhibited acceptable reproducibility, stability and accuracy, showing a promising potential in multianalyte determination for clinical application.  相似文献   

11.
Multiwalled carbon nanotube (MWCNT) was developed as a new sorbent for solid-phase extraction (SPE) of organophosphate (OP) pesticides. A combination of SPE with square-wave voltammetric (SWV) analysis resulted in a fast, sensitive, and selective electrochemical method for determination of OP pesticide using methyl parathion (MP) as a representative. Because of the strong affinity of MWCNT for phosphoric group, nitroaromatic OP compounds can strongly bind to the MWCNT surface. The macroporosity and heterogeneity of MWCNT allow extracting a large amount of MP less than 5 min. The stripping response was highly linear over the MP range of 0.05–2.0 μg/mL, with a detection limit of 0.005 μg/mL. The determination of MP in garlic samples showed acceptable accuracy. The fast extraction ability of MWCNT makes it promising sorbent for various solid-phase extractions.  相似文献   

12.
Organophosphorus (OP) compounds are a diverse chemical group that includes nerve agents and pesticides. They share a common chemical signature that facilitates their binding and adduction of acetylcholinesterase (AChE) within nerve synapses to induce cholinergic toxicity. However, this group diversity results in non-uniform binding and inactivation of other secondary protein targets, some of which may be adducted and protein activity influenced, even when only a relatively minor portion of tissue AChE is inhibited. The determination of individual OP protein binding targets has been hampered by the sensitivity of methods of detection and quantification of protein-pesticide adducts. We have overcome this limitation by the employment of a microchannel plate (MCP) autoradiographic detector to monitor a radiolabelled OP tracer compound. We preincubated rat thymus tissue in vitro with the OP pesticides, azamethiphos-oxon, chlorfenvinphos-oxon, chlorpyrifos-oxon, diazinon-oxon, and malaoxon, and then subsequently radiolabelled the free OP binding sites remaining with 3H-diisopropylfluorophosphate (3H-DFP). Proteins adducted by OP pesticides were detected as a reduction in 3H-DFP radiolabelling after protein separation by one dimensional polyacrylamide gel electrophoresis and quantitative digital autoradiography using the MCP imager. Thymus tissue proteins of molecular weights -28 kDa, 59 kDa, 66 kDa, and 82 kDa displayed responsiveness to adduction by this panel of pesticides. The 59 kDa protein target (previously putatively identified as carboxylesterase I) was only significantly adducted by chlorfenvinphos-oxon (p < 0.001), chlorpyrifos-oxon (p < 0.0001), and diazinon-oxon (p < 0.01), the 66 kDa protein target (previously identified as serum albumin) similarly only adducted by the same three pesticides (p < 0.0001), (p < 0.001), and (p < 0.01), and the 82 kDa protein target (previously identified as acyl peptide hydrolase) only adducted by chlorpyrifos-oxon (p < 0.0001) and diazinon-oxon (p < 0.001), when the average values of tissue AChE inhibition were 30%, 35%, and 32% respectively. The -28 kDa protein target was shown to be heterogeneous in nature and was resolved to reveal nineteen 3H-DFP radiolabelled protein spots by two dimensional polyacrylamide gel electrophoresis and MCP autoradiography. Some of these 3H-DFP proteins spots were responsive to adduction by preincubation with chlorfenvinphos-oxon. In addition, we exploited the useful spatial resolution of the MCP imager (-70 mm) to determine pesticide micolocalisation in vivo, after animal dosing and autoradiography of brain tissue sections. Collectively, MCP autoradiographic imaging provided a means to detect targets of OP pesticides, quantify their sensitivity of adduction relative to tissue AChE inhibition, and highlighted that these common pesticides exhibit specific binding character to protein targets, and therefore their toxicity will need to be evaluated on an individual compound basis. In addition, MCP autoradiography afforded a useful method of visualisation of the localisation of a small radiolabelled tracer within brain tissue.  相似文献   

13.
A simple and rapid sample preparation method using accelerated solvent extraction and solid-phase extraction (SPE) cleanup for determining organophosphorus (OP) pesticides in the roots of Platycodon grandiflorum was developed. The OP pesticides were concentrated by use of an SPE cartridge (ENVI-Carb) and quantitatively analyzed and confirmed by capillary gas chromatography with flame photometric detection. The pesticides were eluted from the cartridges with 20 mL acetonitrile-toluene (3 + 1, v/v). The average recovery from 10 g PF grandiflorum roots, fortified at 3 levels ranging from 0.04 to 1.00 mg/kg, was 91.9% with a relative standard deviation of 4.3%. The limits of detection ranged from 1.16 x 10(-3) mg/kg (dimethoate) to 4.64 x 10(-3) mg/kg (dichlorvos). The proposed method showed acceptable accuracy and precision while minimizing environmental concerns, time, and labor.  相似文献   

14.
《Analytical letters》2012,45(8):783-803
Recent trends and challenges in developing carbon nanotubes (CNT) based sensors and biosensors for the detection of organophosphate (OP) pesticides and other organic pollutants in water are reviewed. CNT have superior electrical, mechanical, chemical, and structural properties over conventional materials such as graphite. At the same time CNT based sensors and biosensors are more efficient compared to the existing traditional techniques such as high-performance liquid chromatography or gas chromatography, because they can provide rapid, sensitive, simple, and low-cost on-field detection. The measurement protocols can be based on enzymatic and non-enzymatic detection. The enzyme acetylcholinesterase (AChE) is used with CNT for fabricating ultrasensitive biosensors for OP detection involving different immobilization schemes such as adsorption, crosslinking, and layer-by-layer self-assembly. This protocol relies on measuring the degree of enzyme inhibition as means of OP quantification. The other enzyme used along with CNT for OP detection is organophosphate hydrolase (OPH) which hydrolyzes the OP into detectable species that can be measured by amperometric or potentiometric methods. Different forms of CNT electrode materials can be used for fabricating such electrodes such as pure CNT and composite CNT. Due to their large surface area and hydrophobicity, CNT have also been used for the extraction and non-enzymatic electrochemical detection of OP with very high efficiency. The application of CNT and their novel properties for the adsorption and electrochemical detection of OP compounds is discussed in detail.  相似文献   

15.
Organophosphate (OP) and carbamate esters can inhibit acetylcholinesterase (AChE) by binding covalently to a serine residue in the enzyme active site, and their inhibitory potency depends largely on affinity for the enzyme and the reactivity of the ester. Despite this understanding, there has been no mechanism-based in silico approach for classification and prediction of the inhibitory potency of ether OPs or carbamates. This prompted us to develop a three dimensional prediction framework for OPs, carbamates, and their analogs. Inhibitory structures of a compound that can form the covalent bond were identified through analysis of docked conformations of the compound and its metabolites. Inhibitory potencies of the selected structures were then predicted using a previously developed three dimensional quantitative structure-active relationship. This approach was validated with a large number of structurally diverse OP and carbamate compounds encompassing widely used insecticides and structural analogs including OP flame retardants and thio- and dithiocarbamate pesticides. The modeling revealed that: (1) in addition to classical OP metabolic activation, the toxicity of carbamate compounds can be dependent on biotransformation, (2) OP and carbamate analogs such as OP flame retardants and thiocarbamate herbicides can act as AChEI, (3) hydrogen bonds at the oxyanion hole is critical for AChE inhibition through the covalent bond, and (4) π–π interaction with Trp86 is necessary for strong inhibition of AChE. Our combined computation approach provided detailed understanding of the mechanism of action of OP and carbamate compounds and may be useful for screening a diversity of chemical structures for AChE inhibitory potency.  相似文献   

16.
Wan H  Yan J  Yu L  Sheng Q  Zhang X  Xue X  Li X  Liang X 《The Analyst》2011,136(21):4422-4430
Characterization of protein glycosylation requires highly specific methods for the enrichment of glycopeptides because of their sub-stoichiometric glycosylation-site occupancy. The hydrophilic affinity based strategy has attracted more attention, owing to its broad glycan specificity, good reproducibility, and compatibility with mass spectrometric (MS) analysis. Several polar matrices have emerged for hydrophilic interaction chromatography (HILIC) approaches, including sepharose, cellulose, ZIC-HILIC and titania. Here, we present the solid-phase extraction (SPE) utility of zirconia coated mesoporous silica (ZrO(2)/MPS) microspheres for glycopeptide isolation prior to MS analysis. The high specificity of this SPE approach was demonstrated by the enrichment of glycopeptides from the digests of model glycoproteins in HILIC mode. ZrO(2)/MPS microspheres show superior selectivity and glycosylation heterogeneity coverage for glycopeptide enrichment to conventional sepharose. Furthermore, digested mixtures of the phosphoprotein α-casein and IgG were also treated with ZrO(2)/MPS HILIC SPE materials, which exhibited that glycopeptides could be effectively enriched with interference from phosphorylated peptides.  相似文献   

17.
An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe3O4NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe3O4/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe3O4NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 °C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1–40 nM, 0.1–50 nM, 1–50 nM and 10–100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM−1), reusability (more than 50 times) and stability (2 months). The sensor was suitable for trace detection of OP pesticide residues in milk and water.  相似文献   

18.
A nanoprobe-induced signal inhibition mechanism was designed for ultrasensitive electrochemical immunoassay at a chitosan-ferrocene (CS-Fc) based immunosensor. The nanoprobe was prepared by covalently loading signal antibody and high-content horseradish peroxidase (HRP) on the graphene oxide (GO) nanocarrier. The immunosensor was prepared through the stepwise assembly of gold nanoparticles (Au NPs) and capture antibody at a CS-Fc modified electrode. After sandwich immunoreaction, the GO-HRP nanoprobes were quantitatively captured onto the immunosensor surface and thus induced the production of a layer of insoluble film through the enzymatically catalytic reaction of the HRP labels. Both the dielectric immunocomplex formed on the immunosensor surface and the enzymatic precipitate with low electroconductivity led to the electrochemical signal decease of the Fc indicator, which was greatly amplified by the multi-enzyme signal amplification of the nanoprobe. Based on this amplified signal inhibition mechanism, a new ultrasensitive electrochemical immunoassay method was developed. Using carcinoembryonic antigen as a model analyte, this method showed a wide linear range over 5 orders of magnitude with a detection limit down to 0.54 pg/mL. Besides, the immunosensor showed good specificity, acceptable reproducibility and stability as well as satisfactory reliability for the serum sample analysis.  相似文献   

19.
A solid-phase extraction (SPE) procedure with the use of superparamagnetic Fe(3)O(4) nanoparticles as extracting agent was developed for HPLC-ESI-MS/MS analysis. Four most heavily used triazine pesticides (herbicides) were taken as the test compounds. The NPs showed an excellent capability to retain the compounds tested, and a quantitative extraction was achieved within 10min under the testing conditions, i.e. 100 microL NP solution was added to 400 mL sample in a beaker with stirring. After extraction, the superparamagnetic NPs were easily collected by using an external magnet. Very importantly, analytes retained on the Fe(3)O(4) NPs could be quantitatively recovered by dissolving the NPs with an HCl solution, allowing subsequent HPLC-ESI-MS/MS quantification. A capillary HPLC-ESI-MS/MS method with the present NP-based SPE procedure was developed for the determination of triazines including atrazine, prometryn, terbutryn, and propazine. Atrazine-d(5) was used as internal standard. The method had an LOD of 10 pg/mL atrazine, and a linear calibration curve over a range from 30 pg to 50.0 ng/mL. Simultaneous determination of the four triazine pesticides in water samples taken from local lakes was demonstrated.  相似文献   

20.
制备了乙酰胆碱酯酶/Nafion/普鲁士蓝修饰的玻碳电极,测试了该修饰电极检测有机农药西维因(carbaryl)和敌百虫(trichlorfon)的性能指标。 利用原子力显微镜和电化学技术研究了电极的构造及其对于有机农药检测性能指标的影响。 结果表明,乙酰胆碱酯酶均匀地分散到Nafion/普鲁士蓝修饰的玻碳电极上。 在最优的实验条件下,构筑的修饰电极检测西维因和敌百虫的线性范围分别为0.01~0.5 μmol/L及2.0~10.0 μmol/L和0.02~1.0 μmol/L及2.0~8.0 μmol/L,检出限分别为5.0和10.0 nmol/L。 并对模拟的实际样品进行了检测,发现该方法有较高的检测灵敏度、较好的重复性和抗干扰性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号