首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The behavior of water dynamics confined in hydrated calcium silicate hydrate (C-S-H) gel has been investigated using broadband dielectric spectroscopy (BDS; 10(-2)-10(6) Hz) in the low-temperature range (110-250 K). Different water contents in C-S-H gel were explored (from 6 to 15 wt%) where water remains amorphous for all the studied temperatures. Three relaxation processes were found by BDS (labeled 1 to 3 from the fastest to the slowest), two of them reported here for the first time. We show that a strong change in the dielectric relaxation of C-S-H gel occurs with increasing hydration, especially at a hydration level in which a monolayer of water around the basic units of cement materials is predicted by different structural models. Below this hydration level both processes 2 and 3 have an Arrhenius temperature dependence. However, at higher hydration level, a non-Arrhenius behavior temperature dependence for process 3 over the whole accessible temperature range and, a crossover from low-temperature Arrhenius to high-temperature non-Arrhenius behavior for process 2 are observed. Characteristics of these processes will be discussed in this work.  相似文献   

2.
Broadband dielectric spectroscopy data on water confined in three different environments, namely at the surface of a globular protein or inside the small pores of two silica substrates, in the temperature range 140 K ≤ T ≤ 300 K, are presented and discussed in comparison with previous results from different techniques. It is found that all samples show a fast relaxation process, independently of the hydration level and confinement size. This relaxation is well known in the literature and its cross-over from Arrhenius to non-Arrhenius temperature behavior is the object of vivid debate, given its claimed relation to the existence of a second critical point of water. We find such a cross-over at a temperature of ~180 K, and assign the relaxation process to the layer of molecules adjacent and strongly interacting with the substrate surface. This is the water layer known to have the highest density and slowest translational dynamics compared to the average: its apparent cross-over may be due to the freezing of some degree of freedom and survival of very localized motions alone, to the onset of finite size effects, or to the presence of a calorimetric glass transition of the hydration shell at ~170 K. Another relaxation process is visible in water confined in the silica matrices: this is slower than the previous one and has distinct temperature behaviors, depending on the size of the confining volume and consequent ice nucleation.  相似文献   

3.
We present results obtained by dielectric spectroscopy in wide frequency (10(-2)-10(9) Hz) and temperature ranges on human hemoglobin in the three different solvents water, glycerol, and methanol, at a solvent level of 0.8 g of solvent/g of protein. In this broad frequency region, there are motions on several time-scales in the measured temperature range (110-370 K for water, 170-410 K for glycerol, and 110-310 K for methanol). For all samples, the dielectric data shows at least four relaxation processes, with frequency dependences that are well described by the Havriliak-Negami or Cole-Cole functions. The fastest and most pronounced process in the dielectric spectra of hemoglobin in glycerol and methanol solutions is similar to the alpha-relaxation of the corresponding bulk solvent (but shifted to slower dynamics due to surface interactions). For water solutions, however, this process corresponds to earlier results obtained for water confined in various systems and it is most likely due to a local beta-relaxation. The slowing down of the glycerol and methanol relaxations and the good agreement with earlier results on confined water show that this process is affected by the interaction with the protein surface. The second fastest process is attributed to motions of polar side groups on the protein, with a possible contribution from tightly bound solvent molecules. This process is shifted to slower dynamics with increasing solvent viscosity, and it shows a crossover in its temperature dependence from Arrhenius behavior at low temperatures to non-Arrhenius behavior at higher temperatures where there seems to be an onset of cooperativity effects. The origins of the two slowest relaxation processes (visible at high temperatures and low frequencies), which show saddlelike temperature dependences for the solvents water and methanol, are most likely due to motions of the polypeptide backbone and an even more global motion in the protein molecule.  相似文献   

4.
Despite extensive efforts in experimental and computational studies, the microscopic understanding of dynamics of biological macromolecules remains a great challenge. It is known that hydrated proteins, DNA and RNA, exhibit a so-called "dynamic transition." It appears as a sharp rise of their mean-squared atomic displacements r2 at temperatures above 200-230 K. Even after a long history of studies, this sudden activation of biomolecular dynamics remains a puzzle and many contradicting models have been proposed. By combining neutron and dielectric spectroscopy data, we were able to follow protein dynamics over an extremely broad frequency range. Our results show that there is no sudden change in the dynamics of the protein at temperatures around approximately 200-230 K. The protein's relaxation time exhibits a smooth temperature variation over the temperature range of 180-300 K. Thus the experimentally observed sharp rise in r2 is just a result of the protein's structural relaxation reaching the limit of the experimental frequency window. The microscopic mechanism of the protein's structural relaxation remains unclear.  相似文献   

5.
We report quasi-elastic neutron scattering experiments at two resolutions that probe timescales of picoseconds to nanoseconds for the hydration dynamics of water, confined in a concentrated solution of N-acetyl-leucine-methylamide (NALMA) peptides in water over a temperature range of 248 K to 288 K. The two QENS resolutions used allow for a clean separation of two observable translational components, and ultimately two very different relaxation processes, that become evident when analyzed under a combination of the jump diffusion model and the relaxation cage model. The first translational motion is a localized beta-relaxation process of the bound surface water, and exhibits an Arrhenius temperature dependence and a large activation energy of approximately 8 kcal mol(-1). The second non-Arrhenius translational component is a dynamical signature of the alpha-relaxation of more fluid water, exhibiting a glass transition temperature of approximately 116 K when fit to the Volger Fulcher Tamman functional form. These peptide solutions provide a novel experimental system for examining confinement in order to understand the dynamical transition in bulk supercooled water by removing the unwanted interface of the confining material on water dynamics.  相似文献   

6.
We report on molecular dynamics simulations of the frequency-dependent dielectric relaxation spectra at room temperature for aqueous solutions of a hydrophilic peptide and an amphiphilic peptide at two concentrations. We find that only the high-concentration amphiphilic peptide solution exhibits an anomalous dielectric increment over that of pure water, while the hydrophilic peptide exhibits a significant dielectric decrement. The dielectric component analysis carried out by decomposing these peptide solutions into peptide, hydration layer, and outer layer(s) of water clearly shows the presence of a unique dipolar component with a relaxation time scale on the order of approximately 25 ps (compared to the bulk water time scale of approximately 11 ps) that originates from the interaction between the hydration layer water and the outer layer(s) of water. Results obtained from the dielectric component analysis further show the emergence of a distinct and much lower frequency relaxation process for the high-concentration amphiphilic peptide compared to the hydrophilic peptide due to strong peptide dipolar couplings to all constituents, accompanied by a slowing of the structural relaxation in all water layers, giving rise to time scales close to approximately 1 ns. We suggest that the molecular origin of the dielectric relaxation anomalies is due to frustration in the water network arising from the amphiphilic chemistry of the peptide that does not allow it to reorient on the picosecond time scale of bulk water motions. This explanation is consistent with the idea of the "slaving" of residue side chain motions to protein surface water, and furthermore offers the possibility that the anomalous dynamics observed from a number of spectroscopies arises at the interface of hydrophobic and hydrophilic domains on the protein surface.  相似文献   

7.
The relaxation dynamics of dipropylene glycol and tripropylene glycol (nPG-n=2,3) water solutions on the nPG-rich side has been studied by broadband dielectric spectroscopy and differential scanning calorimetry in the temperature range of 130-280 K. Two relaxation processes are observed for all the hydration levels; the slower process (I) is related to the alpha relaxation of the solution whereas the faster one (II) is associated with the reorientation of water molecules in the mixture. Dielectric data for process (II) at temperatures between 150 and 200 K indicate the existence of a critical water concentration (x(c)) below which water mobility is highly restricted. Below x(c), nPG-water domains drive the dielectric signal whereas above x(c), water-water domains dominate the dielectric response at low temperatures. The results also show that process (II) at low temperatures is due to local motions of water molecules in the glassy frozen matrix. Additionally, we will show that the glass transition temperatures (T(g)) for aqueous PG, 2PG, and 3PG solutions do not extrapolate to approximately 136 K, regardless of the extrapolation method. Instead, we find that the extrapolated T(g) value for water from these solutions lies in the neighborhood of 165 K.  相似文献   

8.
Molecular dynamics simulations of crystalline Staphylococcal nuclease in full and minimal hydration states were performed to study hydration effects on protein dynamics at temperatures ranging from 100 to 300 K. In a full hydration state (hydration ratio in weight, h=0.49), gaps are fully filled with water molecules, whereas only crystal waters are included in a minimal hydration state (h=0.09). The inflection of the atomic mean-square fluctuation of protein as a function of temperature, known as the glass-like transition, is observed at approximately 220 K in both cases, which is more significant in the full hydration state. By examining the temperature dependence of residual fluctuation, we found that the increase of fluctuations in the loop and terminal regions, which are exposed to water, is much greater than that in other regions in the full hydration state, but the mobilities of the corresponding regions are relatively restricted in the minimal hydration state by intermolecular contact. The atomic mean-square fluctuation of water molecules in the full hydration state at 300 K is 1 order of magnitude greater than that in the minimal hydration state. Above the transition temperature, most water molecules in the full hydration state behave like bulk water and act as a lubricant for protein dynamics. In contrast, water molecules in the minimal hydration state tend to form more hydrogen bonds with the protein, restricting the fluctuation of these water molecules to the level of the protein. Thus, intermolecular interaction and solvent mobility are important to understand the glass-like transition in proteins.  相似文献   

9.
We discuss the relaxation dynamics of glycerol-water mixtures, as studied by dielectric spectroscopy in the frequency range from 1 Hz to 250 MHz and at temperatures between 173 and 323 K. The experimental results obtained for the glycerol-rich mixtures suggest that the main dielectric relaxation process, as well as the so-called high-frequency "excess wing" (EW) and dc conductivity, follow the same temperature dependence. This result indicates that all of these processes are induced by the same molecular origin. A new phenomenological function is proposed to describe the whole dielectric spectrum in the covered frequency range, and some possible mechanisms of dielectric behaviors through the dc conductivity, the main relaxation process, and the EW are discussed.  相似文献   

10.
The dynamics of water confined in silica matrices MCM-41 C10 and C18, with pore diameter of 21 and 36 A, respectively, is examined by broadband dielectric spectroscopy (10(-2)-10(9) Hz) and differential scanning calorimetry for a wide temperature interval (110-340 K). The dynamics from capillary condensed hydration water and surface monolayer of water are separated in the analysis. Contrary to previous reports, the rotational dynamics are shown to be virtually independent on the hydration level and pore size. Moreover, a third process, also reported for other systems, and exhibiting a saddlelike temperature dependence is investigated. We argue that this process is due to a Maxwell-Wagner process and not to strongly bound surface water as previously suggested in the literature. The dynamics of this process is strongly dependent on the amount of hydration water in the pores. The anomalous temperature dependence can then easily be explained by a loss of hydration water at high temperatures in contradiction to previous explanations.  相似文献   

11.
Broadband dielectric spectroscopy and differential scanning calorimetry measurements have been performed to study the molecular dynamics poly (vinyl pyrrolidone) and its water solutions in a wide range of concentrations (0 wt %20 wt % suggesting that this dynamical process is dominated by water-water interactions. In addition, the temperature dependence of the water relaxation times exhibits a crossover from non-Arrhenius to Arrhenius behavior during cooling throughout the glass transition range, which has been interpreted as due to the constrains imposed by the rigid polymer matrix on the water molecules dynamics.  相似文献   

12.
A dielectric relaxation study of aqueous solutions of the amphiphilic model peptide N‐acetyl‐leucine amide (NALA) at 298 K over a wide range of hydration levels is presented. The experiments range from states where water builds up several hydration layers to states where single water molecules or small water clusters are shared by several NALA molecules. The dielectric spectra reveal two modes on the 10 and 100 ps timescales. These are largely broadened with regard to the Lorentzian shape caused by simple Debye‐type relaxation, and are well described by the Kohlrausch–Williams–Watts stretched exponential function. The fast mode is assigned to water reorientation comprising bulk water as well as hydration water. Even when all water molecules are in contact with the solute, this fast component is dominant, and its mean relaxation time is retarded by less than a factor of two relative to neat water. The amplitude of the slow process is far higher than expected for the dipolar reorientation of the solute. The observations are consistent with results from molecular dynamics simulations for a similar model peptide reported in the literature. They suggest that the slow relaxation mode is mainly founded in peptide–water dipolar couplings, with some additional contribution from slowly reorienting hydration water molecules. The results are discussed with regard to the hydration dynamics of proteins and the interpretation of dielectric spectra of protein solutions.  相似文献   

13.
The dynamics of protein–water fluctuations are of biological significance. Molecular dynamics simulations were performed in order to explore the hydration dynamics of staphylococcal nuclease (SNase) at different temperatures and mutation levels. A dynamical transition in hydration water (at ~210 K) can trigger larger-amplitude fluctuations of protein. The protein–water hydrogen bonds lost about 40% in the total change from 150 K to 210 K, while the Mean Square Displacement increased by little. The protein was activated when the hydration water in local had a comparable trend in making hydrogen bonds with protein– and other waters. The mutations changed the local chemical properties and the hydration exhibited a biphasic distribution, with two time scales. Hydrogen bonding relaxation governed the local protein fluctuations on the picosecond time scale, with the fastest time (24.9 ps) at the hydrophobic site and slowest time (40.4 ps) in the charged environment. The protein dynamic was related to the water’s translational diffusion via the relaxation of the protein–water’s H-bonding. The structural and dynamical properties of protein–water at the molecular level are fundamental to the physiological and functional mechanisms of SNase.  相似文献   

14.
Molecular dynamics simulations were used to compute the frequency-dependent dielectric susceptibility of aqueous solutions of alanine and alanine dipeptide. We studied four alanine solutions, ranging in concentration from 0.13-0.55 mol/liter, and two solutions of alanine dipeptide (0.13 and 0.27 mol/liter). In accord with experiment we find a strong dielectric increment for both solutes, whose molecular origin is shown to be the zwitterionic nature of the solutes. The dynamic properties were analyzed based on a dielectric component analysis into solute, a first hydration shell, and all remaining (bulk) waters. The results of this three component decomposition were interpreted directly, as well as by uniting the solute and hydration shell component to a "suprasolute" component. In both approaches three contributions to the frequency-dependent dielectric properties can be discerned. The quantitatively largest and fastest component arises from bulk water [i.e., water not influenced by the solute(s)]. The interaction between waters surrounding the solute(s) (the hydration shell) and bulk water molecules leads to a relaxation process occurring on an intermediate time scale. The slowest relaxation process originates from the solute(s) and the interaction of the solute(s) with the first hydration shell and bulk water. The primary importance of the hydration shell is the exchange of shell and bulk waters; the self-contribution from bound water molecules is comparatively small. While in the alanine solutions the solute-water cross-terms are more important than the solute self-term, the solute contribution is larger in the dipeptide solutions. In the latter systems a much clearer separation of time scales between water and alanine dipeptide related properties is observed. The similarities and differences of the dielectric properties of the amino acid/peptide solutions studied in this work and of solutions of mono- and disaccharides and of the protein ubiquitin are discussed.  相似文献   

15.
We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies <1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies >1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of ~5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network.  相似文献   

16.
Detailed investigations on the dielectric relaxation mechanisms in poly(hydroxyethyl acrylate) (PHEA), by means of the thermally stimulated depolarization currents (TSDC) method in the temperature range 77-300 K are reported. There is particular interest in the dependence of the dielectric relaxation mechanisms on the water content h, h = 0 ? 0.5 w/w, in an attempt to contribute to a better understanding of the physical structure of water in the PHEA hydrogels. We employ thermal sampling (TS) and partial heating (PH) techniques to experimentally analyze the observed complex relaxation processes, due to the secondary (βsw) and the main (α) relaxation, into approximately single responses and to determine the spectra of activation energies E(T) at different h values. Measurements with different electrode configurations reveal different aspects of the dynamics of the relaxation mechanisms and allow the distinction between dipolar and conductivity relaxation contributions. It is shown that by means of these techniques we can determine certain temperature characteristics for the α relaxation and investigate their dependence on water content. We discuss the relation of these characteristic temperatures to the calorimetric glass transition temperature Tg. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The dielectric properties of poly(ethylene oxide) (PEO) are studied by dielectric relaxation spectroscopy measurements in wide ranges of frequency (5–2×109 Hz) and temperature (193 − 300 K). PEO/water systems are also studied in a wide range of water content h (0 − 0.85 grams of water per grams of dry PEO). The measurements allow to distinguish between the dipolar secondary mechanism γ and effects related to free charge motion. The data are analyzed within the formalisms of permittivity, ϵ*, and electric modulus, M*. The water has been found to plasticize the dipolar process and to affect strongly the conduction process. A critical water content hc, hc = 0.13, has been found for the mechanism of charge transport.  相似文献   

18.
Hydrophobic hydration, the perturbation of the aqueous solvent near an apolar solute or interface, is a fundamental ingredient in many chemical and biological processes. Both bulk water and aqueous solutions of apolar solutes behave anomalously at low temperatures for reasons that are not fully understood. Here, we use (2)H NMR relaxation to characterize the rotational dynamics in hydrophobic hydration shells over a wide temperature range, extending down to 243 K. We examine four partly hydrophobic solutes: the peptides N-acetyl-glycine-N'-methylamide and N-acetyl-leucine-N'-methylamide, and the osmolytes trimethylamine N-oxide and tetramethylurea. For all four solutes, we find that water rotates with lower activation energy in the hydration shell than in bulk water below 255 +/- 2 K. At still lower temperatures, water rotation is predicted to be faster in the shell than in bulk. We rationalize this behavior in terms of the geometric constraints imposed by the solute. These findings reverse the classical "iceberg" view of hydrophobic hydration by indicating that hydrophobic hydration water is less ice-like than bulk water. Our results also challenge the "structural temperature" concept. The two investigated osmolytes have opposite effects on protein stability but have virtually the same effect on water dynamics, suggesting that they do not act indirectly via solvent perturbations. The NMR-derived picture of hydrophobic hydration dynamics differs substantially from views emerging from recent quasielastic neutron scattering and pump-probe infrared spectroscopy studies of the same solutes. We discuss the possible reasons for these discrepancies.  相似文献   

19.
Trehalose solutions were investigated by means of broadband dielectric spectroscopy at different water contents, ranging from an anhydrous sample to w(C) = 40%. While the structural α-relaxation was detectable only in the low hydration and dry samples, and in a quite limited range of temperatures, two secondary processes were presented and characterized in all the solutions investigated. In particular, the fastest secondary process displayed a characteristic behavior widely observed in other small organic glass formers. It had an Arrhenius-like temperature dependence, it sped up and increased the dielectric strength when adding water and finally it possessed an activation energy compatible with the breaking/formation of two hydrogen bonds. From all these indications it was plausible to attribute it to water dipole reorientation dynamics. The slower secondary process was again well described by an Arrhenius-like function, now the relaxation time at high temperature was only slightly dependent on the exact water amount but the activation energy was markedly dependent on it. The molecular origin of this process was tentatively attributed to the motion of the entire molecule involving rotation of the two monosugar rings around the glycosidic bond.  相似文献   

20.
We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100∕water mixtures with comparable water-to-TX-100 weight ratio. It consists of the relaxations due to ethylene oxide (EO) unit relaxation, hydration water dynamics, and∕or free water dynamics. The water content dependence of the EO unit relaxation suggests that this relaxation involves dynamics of hydration water molecules. In the IL-in-water microemulsion phase, it is found that bmimPF(6) molecules are preferentially dissolved in water when their concentration in water is lower than the solubility. An additional dielectric relaxation that is absent in the TX-100∕water mixtures is observed in the frequency range of 10(7)-10(8) Hz for this ILM. This low-frequency relaxation is found closely related to the bmimPF(6) molecule and could be attributed to the hopping of its cations∕anions between the anionic∕cationic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号