首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In 1919 the German chemist Hermann Staudinger was the first to describe the reaction between an azide and a phosphine. It was not until recently, however, that Bertozzi and co-workers recognized the potential of this reaction as a method for bioconjugation and transformed it into the so-called Staudinger ligation. The bio-orthogonal character of both the azide and the phosphine functions has resulted in the Staudinger ligation finding numerous applications in various complex biological systems. For example, the Staudinger ligation has been utilized to label glycans, lipids, DNA, and proteins. Moreover, the Staudinger ligation has been used as a synthetic method to construct glycopeptides, microarrays, and functional biopolymers. In the emerging field of bio-orthogonal ligation strategies, the Staudinger ligation has set a high standard to which most of the new techniques are often compared. This Review summarizes recent developments and new applications of the Staudinger ligation.  相似文献   

2.
The study of biomolecules in their native environments is a challenging task because of the vast complexity of cellular systems. Technologies developed in the last few years for the selective modification of biological species in living systems have yielded new insights into cellular processes. Key to these new techniques are bioorthogonal chemical reactions, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionality necessary to sustain life. Herein we describe the bioorthogonal chemical reactions developed to date and how they can be used to study biomolecules.  相似文献   

3.
A systematic approach evaluating template-directed ligation reactions has now resulted in a simple outline for a two-stage replication cycle. This cycle builds on an efficient method for reading the information encoded in DNA into an amplified translation product. It is further demonstrated that the translation product strand is capable of catalyzing the synthesis of the original DNA strand. We propose that this cycle represents just one of many possible solutions; other chemical ligation or polymerization reactions could be accommodated with different templates. In that context, a new template, derived by modest changes to the DNA backbone, has been developed and has been shown to hybridize under reaction conditions different than those accessible to DNA. Therefore, the conceptual groundwork has been laid for extending this approach to encoding and reading stored information in molecules other than the natural biopolymers at the densities found in biology.  相似文献   

4.
A new deoxyuridine derivative 6 bearing a cysteine group at the C5 position was synthesized and incorporated into oligodeoxynucleotide (ODN) by phosphoramidite chemistry. The postsynthetic DNA modification of the cysteine-containing ODN using native chemical ligation with thioesters of biotin and green fluorescent protein variant was successfully demonstrated.  相似文献   

5.
6.
The development of efficient metal‐promoted bioorthogonal ligations remains as a major scientific challenge. Demonstrated herein is that azides undergo efficient and regioselective room‐temperature annulations with thioalkynes in aqueous milieu when treated with catalytic amounts of a suitable ruthenium complex. The reaction is compatible with different biomolecules, and can be carried out in complex aqueous mixtures such as phosphate buffered saline, cell lysates, fetal bovine serum, and even living bacteria (E. coli). Importantly, the reaction is mutually compatible with the classical CuAAC.  相似文献   

7.
《Tetrahedron letters》2003,44(4):785-788
A novel approach to 6-arylpurines based on [2+2+2]-co-cyclotrimerization of 6-alkynylpurines with various α,ω-diynes is described. Co-cyclotrimerization is catalyzed by Ni- and Co-phosphine catalysts and their choice depends on the substitution pattern of the both reactants.  相似文献   

8.
9.
10.
The development of rapid radiolabeling techniques under mild reaction conditions involving the short-lived positron emitter fluorine-18 remains a special challenge in organic PET chemistry. This work describes a novel and facile application of the traceless Staudinger ligation as a mild and versatile labeling method for preparation of various radiotracers labeled with fluorine-18.  相似文献   

11.
A new procedure was developed as an alternative to the enzymatic assembly of natural and modified double-stranded DNAs using chemical reagent (chemical ligation). BrCN was suggested as an efficient coupling reagent, which induces superfast reactions in DNA duplexes. The physicochemical properties and the structure of new types of DNA duplexes, which are the substrates for chemical ligation, with breaks in phosphodiester chains, including concatemers, were studied. Chemical ligation was applied to prepare biologically active 17–200 base-pair double-stranded DNAs and DNA-RNA block-copolymers, to incorporate various modifications into DNA duplexes including pyrophosphate and phosphoramidate unnatural internucleotide bonds. The unique possibilities of this approach were demonstrated in the development of methods for circularization of oligodeoxy ribonucleotides and assembly of branched DNAs. The structural-kinetic concept of chemicalligation was created and the relationship between the reactivity of interacting groups and sequence-dependent local conformation of the ligation site in B-DNA was established. The lesser efficiency of chemical ligation of RNA fragments in comparison to that of DNA analogs was demonstrated and rationalized. This approach was used as a sensitive monitor of a stable double helix formation and third-strand binding to a DNA duplex.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1889–1911, August, 1996.  相似文献   

12.
13.
14.
Raising the bar: The efficacy of bioorthogonal reactions for bioconjugation has been thoroughly evaluated in four different biological settings. Powered by the development of new biocompatible ligands, the copper-catalyzed azide-alkyne cycloaddition has brought about unsurpassed bioconjugation efficiency, and thus it holds great promise as a highly potent and adaptive tool for a broader spectrum of biological applications.  相似文献   

15.
16.
Vaporizing solid samples of metals and semiconductors with a YAG Laser is a method well suited for producing molecules and clusters of those materials. The clusters are examined by either laser-induced fluorescence (LIF) or mass spectroscopic methods. The technique is valuable for both gas phase and matrix studies. The method is described and some applications, studying either the structure of small metal molecules or their reactions, are reviewed, with emphasis on our recent results from the LIF studies of LiBe, Al2 and the reaction of Al with oxygen, yielding A12O. For larger clusters, Ion Cyclotron Resonance is an extremely valuable method, as we demonstrate by its application to the reactions of small charged silicon clusters with strong oxidising agents.  相似文献   

17.
The study on membrane proteins is an important challenge mainly because of their very poor solubility in various solvents.The traditional recombinant expression strategy and the native chemical ligation method both have difficulty in generating sufficient amounts of desired proteins with high efficiency.Previous studies have shown that multiply fluorinated alcohols exhibit good ability to dissolve difficult peptide sequences,especially hexafluoro-2-propanol (HFIP).In the present study we systematically stud...  相似文献   

18.
A safe and efficient flow‐chemistry‐based procedure is presented for 1,3‐dipolar cycloaddition reactions between organic azides and acetylenes. This simple and inexpensive technique eliminates the need for costly special apparatus and utilizes Cu powder as a plausible CuI source. To maximize the reaction rates, high‐pressure/high‐temperature conditions are utilized; alternatively, the harsh reaction conditions can be moderated at room temperature by the joint application of basic and acidic additives. A comparison of the performance of these two approaches in a series of model reactions has resulted in the formation of useful 1,4‐disubstituted 1,2,3‐triazoles in excellent yields. The risks that are associated with the handling of azides are lowered, thanks to the benefits of flow processing, and gram‐scale production has been safely implemented. The synthetic capability of this continuous‐flow technique is demonstrated by the efficient syntheses of some highly functionalized derivatives of the antifungal cispentacin.  相似文献   

19.
Tetrakis(triazolylmethyl)ethylenediamine, which is a class of tetrakis(2‐pyridylmethyl)ethylenediamine (TPEN) analogue, is synthesized by a quadruple click reaction of tetrapropargylated ethylenediamine and four equivalents of alkyl azide. The obtained compound efficiently extracted the soft metal cadmium(II) ions by solvent extraction. It is also found that an N‐isopropylacryl amide (NIPA) gel using the triazole ethylenediamine as a cross‐linker exhibits a temperature‐dependent extraction performance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号