首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cu4P4X4Fe2 (X = Cl, Br) cages are formed upon reactions of octaethyl‐1,1′‐diphosphaferrocene (odpf) with the respective CuI halide in CH2Cl2/CH3CN solvent mixtures. These cages have adamantoid Cu4X4P2 cores with two planar anelated CuP2Fe rings as the flaps. Both complexes 1 and 2 feature tri‐ and tetracoordinate CuI ions and an additional acetonitrile solvent molecule in the crystal. In 1 , the solvent molecule is coordinated to one copper ion whereas it remains uncoordinated in 2 . The tricoordinate CuI ions show a slight pyramidalization at the metal atom and somewhat short contacts to the other tricoordinate CuI ion in 2 or the Cu3‐triangle in 1 . NMR spectroscopy revealed easy decoordination of the acetonitrile ligand from 1 and a dynamic “windshield‐wiper”‐type process that interconverts the differently coordinated phospholide rings of each odpf ligand and the tri‐ and tetracoordinate CuI ions.  相似文献   

2.
This work illustrates possible diffusion paths for CuI ions in a highly disordered structure of a superionic conductor of the argyrodite family. The Cu6P(Se0.7S0.3)5Br cubic structure is built from a [P(Se0.7S0.3)5Br] framework in which CuI ions are distributed in various tetrahedral, triangular and linear sites. There are two types of disorder in the structure. The first type results from the fact that there are fewer CuI ions than the number of positions available for them in the unit cell. The second type is due to the static distribution of Se and S atoms in the [P(Se0.7S0.3)5Br] framework. The title compound is a solid solution of two efficient ionic conductors, namely Cu6PSe5Br and Cu6PS5Br, in which high ionic conductivity results from order–disorder phenomena in the copper substructure. To shed light on the distribution of CuI ions in disordered Cu6P(Se0.7S0.3)5Br, we refined their positions using a combination of a nonharmonic approach and a split‐atom model. At room temperature, CuI ions show strong anharmonic vibrations along the edge of the (Br)4 tetrahedra. The probability density functions of the CuI ions overlap and reveal possible diffusion paths.  相似文献   

3.
Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic-level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4(S-Cys)4] intermediates leading to [Cu4(S-Cys)5], [Cu4(S-Cys)6]2−, and [Cu4(S-Cys)5(O-Asn)] clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.  相似文献   

4.
The electrochemical behaviour of the copper-substituted Keggin-type and sandwich-type polyoxotungstate anions of the compounds α-[(C4H9)4N]4H[PW11CuIIO39] and α-B-[(C4H9)4N]7H3[CuII4(H2O)2(PW9O34)2] was studied by cyclic voltammetry in acetonitrile. In both cases two copper 1-electron reduction waves were detected in the cathodic scan. The first one was due to the reduction of one CuII to CuI in the polyoxoanion and the second one to the consecutive reduction of the preformed CuI to Cu0, with the consequent deposition/adsorption of the ejected metal atom at the glassy carbon electrode surface. In the anodic scan, Cu0 was re-oxidised with regeneration of the initial copper(II) complexes, via a CuI intermediate. The observed two-step reduction of copper(II) to copper(0) and the formation of intermediate species containing copper(I) is here reported for the first time for copper substituted polyoxotungstates. The co-ordination of the acetonitrile molecules to the copper ions must play a role in the formation of the copper(I) species, which are not detected in aqueous solution.  相似文献   

5.
Bacteria possess cytosolic proteins (Csp3s) capable of binding large quantities of copper and preventing toxicity. Crystal structures of a Csp3 plus increasing amounts of CuI provide atomic‐level information about how a storage protein loads with metal ions. Many more sites are occupied than CuI equiv added, with binding by twelve central sites dominating. These can form [Cu4(S‐Cys)4] intermediates leading to [Cu4(S‐Cys)5], [Cu4(S‐Cys)6]2−, and [Cu4(S‐Cys)5(O‐Asn)] clusters. Construction of the five CuI sites at the opening of the bundle lags behind the main core, and the two least accessible sites at the opposite end of the bundle are occupied last. Facile CuI cluster formation, reminiscent of that for inorganic complexes with organothiolate ligands, is largely avoided in biology but is used by proteins that store copper in the cytosol of prokaryotes and eukaryotes, where this reactivity is also key to toxicity.  相似文献   

6.
Four kinds of copper(I)-phenanthroline complexes ([CuI(phen)2]Cl, [CuI(phen)Cl]2, [CuI(phen)2]BF4, and CuI(phen)PPh3Cl) were prepared and used as catalysts for amination and amidation of aryl iodide to investigate the influence on the yields of products due to differences of the structures. These complexes were found to work as catalysts on these reactions and showed that the differences of structures of copper(I) complexes significantly influenced the yield of aryl-nitrogen bond forming processes.  相似文献   

7.
Using experimental potential values for a vitreous carbon electrode in contact with the RbCu4Cl3I2 solid electrolyte, the concentration of Cu2+ ions in the electrolyte was determined. At 0.5 V, the concentration of Cu2+ was 1.25×1018 cm–3. The estimated values of the Cu2+ ion concentration in RbCu4Cl3I2 (0.8%) and the potential of the vitreous carbon electrode after electrochemical decomposition of RbCu4Cl3I2 (0.606 V) correspond to experimental values of 2% and 0.58 V, respectively. This demonstrates the adequacy of the model describing the electrode potential of Cu2+ as a function of the concentration in RbCu4Cl3I2. When the C/RbCu4Cl3I2 interface was polarized, the diffusion coefficient of Cu2+ was 1.5×10–8 cms–1. Investigations of the interface between the copper electrode and RbCu4Cl3I2 were carried out by galvanostatic and potentiostatic methods. A 1-μm layer of cuprous oxide, Cu2O, was discovered on the interface of the copper electrode with RbCu4Cl3I2. This layer blocks the course of the electrochemical reaction Cu0–e⇌Cu+ with participation of copper metal. The copper electrode behaves as an inert redox electrode at low overvoltages. In this case, at the Cu2O/RbCu4Cl3I2 interface an electrochemical reaction with Cu2+ ion participation, Cu+–e⇌Cu2+, takes place. The results suggest that the reaction rate is limited by slowing the Cu2+ diffusion in RbCu4Cl3I2. The initial Cu2+ ion concentration in the electrolyte near this interface is about 1.4×1017 cm–3. The exchange current density is about (4±2)×10–6 A cm–2. At potentials ϕ>8–10 mV, an electrical breakdown of the Cu2O layer takes place, allowing copper metal to ionize to Cu+. We suggest that at 10 mV<ϕ<100 mV the rate of this reaction is limited by the formation and growth of copper nuclei and at ϕ>120 mV the reaction rate is limited by charge transfer. Electronic Publication  相似文献   

8.
The reaction of C10H7-1-N(PPh2)2 ( 1 ) with two equivalents of CuI in acetonitrile resulted in the formation of octahedron Cu4I4[ 1 ]2 complex ( 2 ). The crystal structure of 2 showed it adopted a rare octahedral arrangement. The rectangular Cu4 plane is μ4-capped by two of the iodides and is placed in axial positions above and below the Cu4-plane form an octahedron, whereas the other two iodides are bonded to two copper atoms in a μ2-fashion. The luminescence of complex 2 arises from a triplet halide-to-ligand charge transfer (3XLCT) excited state and 3CC (Cu4I4 cluster-centered) excited state are not involved in the luminescence by the rigid bidentate ligand 1 in spite of the short CuI–CuI bond length. Complex 2 was identified and characterized by multinuclear NMR (1H, 13C, 31P NMR) and IR spectroscopy. Crystal structure determinations of 1 and 2 were carried out.  相似文献   

9.
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3 and CuIIn(HCO2)2n+1, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge-transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low-lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge-transfer excitations, specific excited-state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3, the system relaxes to a local minimum on an excited-state potential-energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.  相似文献   

10.
Molecular iodine is oxidised by phosphorus pentafluoride in iodine pentafluoride at room temperature giving I2+, PF6?, and PF3. I2+ is formed from uranium hexafluoride under similar conditions, but further oxidation occurs depending on the reaction stoicheiometry used. In all cases uranium pentafluoride is formed. Copper(II) fluoride reacts with UF5 in acetonitrile at room temperature to give copper(II) hexafluorouranate(V), which is reduced by copper metal to give the copper(I) salt. The latter compound is formed from UF6 and Cu metal, via the CuII salt, only if a fresh Cu surface is used for the reduction step.  相似文献   

11.
One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI(MeCN)4]PF6, and paraformaldehyde affords a mixed-valent [TREN4CuIICuICuI3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu33-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII3-O)](PF6)4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI3-OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature''s multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 to 106 M−1 s−1) were observed for both CuICuICuI/CuIICuICuI and CuIICuICuI/CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.

Geometric constraints and site isolation provided by the cryptand enable reversible redox of tricopper μ-oxo cluster.  相似文献   

12.
Mixed‐valence copper(I/II) atoms have been introduced successfully into a Pb/I skeleton to obtain two heterometallic iodoplumbates, namely poly[bis(tetra‐n‐butylammonium) [bis(μ3‐dimethyldithiocarbamato)dodeca‐μ3‐iodido‐hexa‐μ2‐iodido‐tetracopper(I)copper(II)hexalead(II)]], {(C16H36N)2[Cu4ICuIIPb6(C3H6NS2)2I18]}n , (I), and poly[[μ3‐iodido‐tri‐μ2‐iodido‐iodido[bis(1,10‐phenanthroline)copper(I)]copper(I)copper(II)lead(II)] hemiiodine], {[CuICuIIPbI5(C12H8N2)2]·0.5I2}n , (II), under solution and solvothermal conditions, respectively. Compound (I) contains two‐dimensional anionic layers, which are built upon the linkages of CuII(S2CNMe2)2 units and one‐dimensional anionic Pb/I/CuI chains. Tetra‐n‐butylammonium cations are located between the anionic layers and connected to them via C—H…I hydrogen‐bonding interactions. Compound (II) exhibits a one‐dimensional neutral structure, which is composed of [PbI5] square pyramids, [CuII4] tetrahedra and [CuIIN4I] trigonal bipyramids. Face‐to‐face aromatic π–π stacking interactions between adjacent 1,10‐phenanthroline ligands stabilize the structure and assemble compound (II) into a three‐dimensional supramolecular structure. I2 molecules lie in the voids of the structure.  相似文献   

13.
The synthesis and structural characterisation of low‐valent dinuclear copper(I) and copper(0) complexes supported by organogallium ligands has been accomplished for the first time by the reductive coordination reaction of [GaCp*] (Cp*=pentamethylcyclopentadienyl) and [Ga(ddp)] (ddp=HC(CMeNC6H3‐2,6‐iPr2)2 2‐diisopropylphenylamino‐4‐diisopropylphenylimino‐2‐pentene) with readily available copper(II) and copper(I) precursors. The treatment of CuBr2 and Cu(OTf)2 (OTf=CF3SO3) with [Ga(ddp)] under mild conditions resulted in elimination of [Ga(L)2(ddp)] (L=Br, OTf) and afforded the novel gallium(I)/copper(I) compounds [{(ddp)GaCu(L)}2] (L=Br ( 1 ), OTf ( 2 )). The single‐crystal X‐ray structure determinations of 1 and 2 reveal that these molecules are composed of {(ddp)GaCu(L)} dimeric units, with planar CuI? GaI four‐membered rings and short CuI???CuI distances, with 2 exhibiting the shortest CuI???CuI contact reported to date of 2.277(3) Å. The all‐gallium coordinated dinuclear [Cu2(GaCp*)(μ‐GaCp*)3Ga(OTf)3] ( 3 ) is formed when Cu(OTf)2 is combined with [GaCp*] instead of [Ga(ddp)]. Notably, in the course of this redox reaction Lewis acidic Ga(OTf)3 is formed, which coordinates to one of the electron‐rich copper(0) centres. Compound 3 is suggested as the first case of a structurally characterised complex of copper(0). By changing the copper(II) to a copper(I) source, that is, [Cu(cod)2][OTf] (cod=1,5‐cyclooctadiene), the salt [Cu2(GaCp*)3(μ‐GaCp*)2][OTf]2 ( 4 ) is formed, the cationic part of which is related to previously described isoelectronic dinuclear d10 complexes of the type [M2(GaCp*)5] (M=Pd, Pt).  相似文献   

14.
Abstract

In the present study, the oxidative dissolution of metallic copper has been explored with the intention to prepare some new complexes with urotropine (hmta) and triethylenediamine (dabco) ligands. All the compounds synthesized were characterized by single-crystal X-ray diffraction and Raman spectroscopy. Reactions performed in a DMSO/CuCl2?2H2O mixture resulted in [(μ-Cl)2CuI(hdabco+)CuI(μ-Cl)(κS-DMSO)]n and [CuICl(hmta)2] complexes. Their isostructural bromide analogs [(μ-Br)2CuI(hdabco+)CuI(μ-Br)(κS-DMSO)]n and [CuIBr(hmta)2] were prepared by the reaction of elemental copper with respective ligands in a DMSO/CBr4 mixture. Early interrupted reaction of the copper wire with the DMSO/CBr4/dabco solution resulted in an appearance of crystals of the [CuI2Br2(CO)2(dabco)]n carbonyl complex on the copper surface. It arises with the participation of in situ formed carbon monoxide. Despite the identical stoichiometry, the crystal structure of the [Cu2Br2(CO)2(dabco)]n complex is markedly different from that of a known [Cu2Cl2(CO)2(dabco)]n analog.  相似文献   

15.
The proton‐induced electron‐transfer reaction of a CuII μ‐thiolate complex to a CuI‐containing species has been investigated, both experimentally and computationally. The CuII μ‐thiolate complex [CuII2( LMeS )2]2+ is isolated with the new pyridyl‐containing ligand LMeSSLMe , which can form both CuII thiolate and CuI disulfide complexes, depending on the solvent. Both the CuII and the CuI complexes show reactivity upon addition of protons. The multivalent tetranuclear complex [CuI2CuII2( LS )2(CH3CN)6]4+ crystallizes after addition of two equivalents of strong acid to a solution containing the μ‐thiolate complex [CuII2( LS )2]2+ and is further analyzed in solution. This study shows that, upon addition of protons to the CuII thiolate compound, the ligand dissociates from the copper centers, in contrast to an earlier report describing redox isomerization to a CuI disulfide species that is protonated at the pyridyl moieties. Computational studies of the protonated CuII μ‐thiolate and CuI disulfide species with LSSL show that already upon addition of two equivalents of protons, ligand dissociation forming [CuI(CH3CN)4]+ and protonated ligand is energetically favored over conversion to a protonated CuI disulfide complex.  相似文献   

16.
In the tetranuclear copper complex tetrakis[μ‐3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]bis[3,5‐bis(2‐pyridyl)‐1,2,4‐triazolido]dicopper(I)dicopper(II) dihydrate, [CuI2CuII2(C12H8N5)6]·2H2O, the asymmetric unit is composed of one CuI center, one CuII center, three anionic 3,5‐bis(2‐pyridyl)‐1,2,4‐triazole (2‐BPT) ligands and one solvent water molecule. The CuI and CuII centers exhibit [CuIN4] tetrahedral and [CuIIN6] octahedral coordination environments, respectively. The three independent 2‐BPT ligands adopt different chelating modes, which link the copper centers to generate a chair‐like tetranuclear metallomacrocycle with metal–metal distances of about 4.4 × 6.2 Å disposed about a crystallographic inversion center. Furthermore, strong π–π stacking interactions and O—H...N hydrogen‐bonding systems link the tetracopper clusters into a two‐dimensional supramolecular network.  相似文献   

17.
Two novel copper(I) complexes with Cu‐O bonds, [Cu2L2(PPh3)2](BF4)2 ( 1 ) and [Cu(L)(dppeo)](BF4) ( 2 ) ( L = 6‐(4‐diethylmethylphosphonatephenyl)‐2,2′‐bipyridine, dppeo = bis(diphenylphosphino)ethane monoxide), have been prepared and their structures characterized. In the binuclear complex 1 , the ligand L serves as tridentate donor with the N, N′ and O as coordination atoms, and the two CuI atoms are bridged through both P = O donor atoms in different ligand L with a triphenylphosphine molecule as auxiliary ligand. While in mononuclear complex 2 , both ligands L and dppeo behave as bidentate with NN from L and PO from dppeo chelating to CuI atom.  相似文献   

18.
The low efficiency triplet emission of hybrid copper(I) iodide clusters is a critical obstacle to their further practical optoelectronic application. Herein, we present an efficient hybrid copper(I) iodide cluster emitter (DBA)4Cu4I4 , where the cooperation of excited state structure reorganization and the metallophilicity interaction enables ultra-bright triplet yellow-orange emission with a photoluminescence quantum yield over 94.9 %, and the phonon-assisted de-trapping process of exciton induces the negative thermal quenching effect at 80–300 K. We also investigate the potential of this emitter for X-ray imaging. The (DBA)4Cu4I4 wafer demonstrates a light yield higher than 104 photons MeV−1 and a high spatial resolution of ≈5.0 lp mm−1, showing great potential in practical X-ray imaging applications. Our new copper(I) iodide cluster emitter can serve as a model for investigating the thermodynamic mechanism of photoluminescence in hybrid copper(I) halide phosphorescence materials.  相似文献   

19.
Operando X‐ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu‐exchanged SSZ‐13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO‐assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu‐bound NO2 with proximal NH4+ completes the catalytic cycle. N2 is produced in both reduction and oxidation half‐cycles.  相似文献   

20.
Copper(I) coordination complexes of the anionic fluorinated ligand, hydrotris(3-trifluoromethyl-5-methyl-1-pyrazolyl)borate (L0f), i.e. the copper(I) carbonyl complex, [CuI(L0f)(CO)] (1), the copper(I) triphenylphosphine complex, [CuI(L0f)(PPh3)] (2), the copper(I) acetonitrile complex, [CuI(L0f)(NCMe)] (3), and the corresponding copper(I) triphenylphosphine complex with hydrotris(3,5-diisopropyl-1-pyrazolyl)-borate anion (L1), i.e. [CuI(L1)(PPh3)] (4), were synthesized in order to investigate the influence of the electron-withdrawing groups on the pyrazolyl rings. The structures of complexes 1, 2, and 4 were determined by X-ray crystallography. While X-ray crystallography did not show definitive trends in terms of copper(I) atom geometry, the clear influence of the electronic structure of the pyrazolyl rings is observed by spectroscopic techniques, namely, IR and multinuclear NMR spectroscopy. Finally, the relative stability of the copper(I) complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号