首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinduced electron-transfer processes of the newly synthesized [60]fullerene-diphenylbenzothiadiazole-triphenylamine (C60-PBTDP-TPA) triad in polar and nonpolar solvents have been studied by using time-resolved transient absorption and fluorescence measurements from picosecond to microsecond regions. By fluorescence lifetime measurements in picosecond time regions, excitation of the charge-transfer transition of the PBTDP-TPA moiety in C60-PBTDP-TPA induces energy transfer to the C60 moiety generating 1C60*-PBTDP-TPA, competitively with charge separation generating C60*--PBTDP-TPA*+. From 1C60*-PBTDP-TPA, which is generated directly and indirectly, charge separation occurs generating C60*--PBTDP-TPA*+ in polar solvents. The C60*--PBTDP-TPA*+ formed via the singlet excited states decayed within a few nanoseconds as revealed by the picosecond transient absorption spectra. In the nanosecond time region, C60*--PBTDP-TPA*+ is produced slowly, probably via 3C60*-PBTDP-TPA. Lifetimes of such slowly generated C60*--PBTDP-TPA*+ were longer than 1 micros, which are the longest values among the C60-bridge-TPA triad systems reported hitherto at room temperature. Roles of the PBTDP-TPA moiety with twisted intermolecular charge-transfer character playing as energy donor and electron donor in addition to the bridge have been disclosed.  相似文献   

2.
Novel photo- and electroactive triads, in which pi-conjugated p-phenylenevinylene oligomers (oPPVs) of different length are connected to a photoexcited-state electron donor (i.e., zinc tetraphenylporphyrin) and an electron acceptor (i.e., C(60)), were designed, synthesized, and tested as electron-transfer model systems. A detailed physicochemical investigation, concentrating mainly on long-range charge separation and charge recombination and kinetics, revealed small attenuation factors beta of 0.03+/-0.005 A(-1). Energy matching between the HOMO levels of C(60) and oPPVs emerged as a key parameter for supporting molecular-wire-like behavior: It favors rapid and efficient electron or hole injection into the oPPV wires. Large electronic coupling values were determined as a result of paraconjugation in the oPPV moieties.  相似文献   

3.
《Vibrational Spectroscopy》2007,43(2):415-419
Surface-enhanced Raman scattering (SERS) spectrum of very good quality of “silver nano-particles/C60/silver film” system was reported for the first time by using the pyridine as a intermediate to connect and nest the C60 molecules to the gap of silver nano-particles and silver film. Experiment results show that the ternary system of “silver nano-particles/C60/silver film” is very effective and active. Not only was the number of vibrational modes greatly increased, especially some modes that were forbidden in Raman spectrum, but also were the significant Raman bands splitted as well as frequencies up and down shifted, respectively, arising from symmetry lowering and selection rule relaxing of C60 induced by the silver surface. Furthermore, the splitting of the Raman modes is consistent with the calculation based on group theory. The adsorption of C60 molecules is oriented on pentagons of C60 on the silver surface. It is difficult to separate the contributions of the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. On the one hand, the silver nanoparticles modified on the silver film play an important role in magnifying the surface local electric field near the silver surface through resonant surface plasmon excitation. On the other hand, charge transfer factor may not be neglected.  相似文献   

4.
We investigate the valence electronic charge density of the C(60) (-) monomers in (C(60) (-))(n) polymer chains in K- and RbC(60) by means of a nonorthogonal tight-binding formalism using experimental data on the positions of the carbon atoms. Various configurations of the C(60) cages are considered. Starting from the ideal icosahedral C(60) structure and moving to the realistic, experimentally determined spatial configuration of the C(60) cages in K- and RbC(60), we observe a systematic increase of the electric quadrupole moments on the C(60) (-) monomers. We also confirm the validity of factorizing the charge density of a C(60) (-) monomer into an angular and a radial part.  相似文献   

5.
Highly enhanced nonlinear absorption cross section values of C60(>DPAF-C2M), C60(>DPAF-C9), and C60(>DPAF-C10) dyads were detected up to 5400, 9700, and 14000 GM, respectively, in the 2.0 ps region in toluene at the concentration of 1.5 x 10(-3) M. They were correlated to a trend showing higher efficiency in light transmittance attenuation down to 39-46% for the dyads C60(>DPAF-C10) and C60(>DPAF-C9) with the increase of irradiance intensity up only to 140 GW/cm(2). The phenomena were attributed to additional enhancement on the excited-state absorption of (1)C60*(>DPAF-Cn ) in the subpicosecond to picosecond region over the two-photon absorption of C60(>DPAF-Cn ) in the femtosecond region. Its accumulative 2.0 ps absorption cross sections were estimated to be 8900 GM for (1)C60*(>DPAF-C9), roughly one order of magnitude higher than its intrinsic femtosecond 2PA cross sections.  相似文献   

6.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

7.
The covalent linkage of two [60]fullerene cores to a tetrathiafulvalene (TTF) donor affords a soluble and photoactive C(60)-TTF-C(60) triad. Spectroscopic and photophysical characterization of the C(60)-TTF-C(60) triad are given. Although the cyclic voltammetry measurements reveal no notable interaction between the chromophores in the ground state, photophysical data show that in the excited state an intramolecular electron transfer, evolving from the TTF donor to the singlet state of C(60), prevails, yielding a long-lived charge separated radical pair.  相似文献   

8.
The experimental charge densities of the halogenated C(60) fullerenes C(60)F(18) and C(60)Cl(30) were determined from high-resolution X-ray data sets measured with conventional Mo(Kalpha) radiation at 20 K for C(60)Cl(30) and with synchrotron radiation at 92 K for the fluorine compound. Bond topological and atomic properties were analyzed by using Bader's AIM theory. For the different C--C bonds, which vary in lengths between 1.35 and 1.70 A bond orders n between n=2 and significantly below n=1 were calculated from the bond topological properties at the bond critical points (BCP's). The low bond orders are seen for 5/6 bonds with each contributing carbon carrying a halogen atom. By integration over Bader's zero flux basins in the electron density gradient vector field atomic properties were also obtained. In contrast to free C(60), in which all carbon atoms have a uniform volume of 11 A(3) and zero charge, atomic volumes vary roughly between 5 and 10 A(3) in the halogenated compounds. Almost zero atomic charges are also found in the Cl derivative but a charge separation up to +/-0.8 e exists between C and F in C(60)F(18) due to the higher fluorine electronegativity, which is also seen in the electrostatic potential for which the electronegativity difference between carbon and fluorine, and the addition to one hemisphere of the fullerene cage leads to a strong potential gradient along the C(60)F(18) molecule. From the summation over all atomic volumes it follows that the halogen addition does not only lead to a dramatic distortion of the C(60) cage but also to a significant shrinkage of its volume.  相似文献   

9.
The supramolecular self-assembled monolayers (SAMs) of C(60) by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C(60) monoanion. The results indicate that monoanionic C(60) plays a crucial role in the formation of the C(60)-containing self-assembled monolayers. The generation of C(60) monoanion and the formation process of C(60) SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C(60) SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C(60) by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C(60). The new C(60) SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C(60) on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C(60) over the thiolated beta-CD SAMs. The surface hydrophobicity increased greatly upon the formation of the C(60)-containing SAMs as analyzed by water contact angle measurements. The results are in agreement with the formation of 1:1 complex of C(60) and cyclodextrin on gold surfaces, though it also reveals some non-homogeneous features of the monolayers.  相似文献   

10.
Molecules of C60 covalently connected with N-ethylcarbazole (EtCz) and triphenylamine (TPA) have been synthesized. Photoinduced electron transfer in C60-EtCz and C60-TPA has been studied in polar and nonpolar solvents using time-resolved transient absorption and fluorescence measurements. From the fluorescence lifetimes, the excited singlet state of the C60 moiety (1C60) of C60-TPA generates predominantly C60*--TPA*+, which decays quickly to the ground state within 6 ns even in polar solvents. In the case of C60-EtCz, on the other hand, about half of the 1C60 moiety generates short-lived C60*--EtCz*+, while the other half of the 1C60 moiety is transferred to the 3C60 moiety via intersystem crossing in dimethylformamide, in which the energy level of C60*--EtCz*+ is lower than that of 3C60. Thus, the charge separation takes place via 3C60 generating C60*--EtCz*+, having a lifetime as long as 300 ns, probably because of the triplet spin character of C60*--EtCz*+. A special property of the EtCz moiety to stabilize the hole in the charge-separated state was revealed.  相似文献   

11.
The single-component adsorption isotherms of the C60 (from 0 to 15 g/L) and C70 (from 0 to 8 g/L) buckminsterfullerenes on a tetraphenylporphyrin-bonded silica were acquired by frontal analysis, using a solution of toluene-1-methylnaphthalene (40:60, v/v) as the mobile phase. The best isotherm model derived from the fitting of these adsorption data was the bi-Langmuir model, a choice supported by the bimodal affinity energy distribution (AED) obtained for C60. The isotherm parameters derived from the inverse method (IM) of isotherm determination (by fitting calculated profiles to experimental overloaded band profiles of C60 and C70) are in very good agreement with those derived from the FA data. According to the isotherm parameters found by these three methods (FA, AED, IM), the tetraphenylporphyrin-bonded silica can adsorb 54 and 42 mmol/L of C60 and C70 fullerenes, respectively, a result that is consistent with the relative molecular size of these two compounds. The 20% lower surface accessibility for C70 is compensated by a three times higher equilibrium constant on the low-energy sites, giving a selectivity alpha(C70/C60) = 3.6. Large volumes (0.2, 0.8 and 1.7 mL) of mixtures of C60 (3.2 g/L) and C70 (1.3 g/L) were injected and their elution profiles compared to those calculated from the competitive bi-Langmuir model derived from the single-component isotherm data. A good agreement is obtained between calculated and experimental profiles, which supports the two-site adsorption mechanism derived from the single-component adsorption data. The measurements of the influence of the pressure on the retention of C60 and C70 demonstrate that the partial molar volumes of the two buckminsterfullerenes are 12 mL/mol larger in the stationary than in the mobile phase.  相似文献   

12.
The interaction between C(60) and Si atoms has been investigated for Si atoms adsorbed on a C(60) film using in situ x-ray photoelectron spectroscopy (XPS) and density-functional (DFT) calculations. Analysis of the Si 2p core peak identified three kinds of Si atoms adsorbed on the film: silicon suboxides (SiO(x)), bulk Si crystal, and silicon atoms bound to C(60). Based on the atomic percent ratio of silicon to carbon, we estimated that there was approximately one Si atom bound to each C(60) molecule. The Si 2p peak due to the Si-C(60) interaction demonstrated that a charge transfer from the Si atom to the C(60) molecule takes place at room temperature, which is much lower than the temperature of 670 K at which the charge transfer was observed for C(60) adsorbed on Si(001) and (111) clean surfaces [Sakamoto et al., Phys. Rev. B 60, 2579 (1999)]. The number of electrons transferred between the C(60) molecule and Si atom was estimated to be 0.59 based on XPS results, which is in good agreement with the DFT result of 0.63 for a C(60)Si with C(2v) symmetry used as a model cluster. Furthermore, the shift in binding energy of both the Si 2p and C 1s core peaks before and after Si-atom deposition was experimentally obtained to be +2.0 and -0.4 eV, respectively. The C(60)Si model cluster provides the shift of +2.13 eV for the Si 2p core peak and of -0.28 eV for the C 1s core peak, which are well corresponding to those experimental results. The covalency of the Si-C(60) interaction was also discussed in terms of Mulliken overlap population between them.  相似文献   

13.
A photochemical reaction of C(60) with disilane in a 2:3 ratio affords the isomer mixture of the tetrakis-adduct of C(60)((t)BuPh(2)Si)(4) as the major product. The use of a three-stage HPLC separation system isolated three of their isomers. Their structural assignments were based on FAB mass, UV-vis, NMR, and cyclic voltammetry (CV) measurements. The CV analysis showed that the terakis-adduct has lower oxidation and higher reduction potentials than the bis-adduct C(60)((t)BuPh(2)Si)(2) and the parent C(60).  相似文献   

14.
A SiC nanomesh is used as a nanotemplate to direct the epitaxy of C60 molecules. The epitaxial growth of C60 molecules on SiC nanomesh at room temperature is investigated by in situ scanning tunneling microscopy, revealing a typical Stranski-Krastanov mode (i.e., for the first one or two monolayers, it is a layer-by-layer growth or 2-D nucleation mode; at higher thicknesses, it changes to island growth or a 3-D nucleation mode). At submonolayer (0.04 and 0.2 ML) coverage, C60 molecules tend to aggregate to form single-layer C60 islands that mainly decorate terrace edges, leaving the uncovered SiC nanomesh almost free of C60 molecules. At 1 ML C60 coverage, a complete wetting layer of hexagonally close-packed C60 molecules forms on top of the SiC nanomesh. At higher coverage from 4.5 ML onward, the C60 stacking adopts a (111) oriented face-centered-cubic (fcc) structure. Strong bright and dim molecular contrasts have been observed on the first layer of C60 molecules, which are proposed to originate from electronic effects in a single-layer C60 island or the different coupling of C60 molecules to SiC nanomesh. These STM molecular contrast patterns completely disappear on the second and all the subsequent C60 layers. It is also found that the nanomesh can be fully recovered by annealing the C60/SiC nanomesh sample at 200 degrees C for 20 min.  相似文献   

15.
Water-soluble oligo(ethylene glycolated) derivatives of two-photon absorptive diphenylaminofluorenocarbonyl-methano[60]fullerene, denoted as C60(>DPAF-EG6), were synthesized with their molecular self-assembly characteristics in H2O studied. The formation of nano- to submicron-sized spherical hollow vesicles with a shell width of 15-20 nm was observed by transmission electron microscopy (TEM) micrographs. This shell width fits approximately with the length of a disordered bilayer-like molecular packing of C60(>DPAF-EG6), arising from strong intermolecular hydrophobic interactions of fullerene cages. Photoinduced intramolecular charge separation followed by charge recombination on the nanosecond time scale, from the DPAF moiety to the C60 cage in the vesicle structure, was detected via transient spectroscopic measurements.  相似文献   

16.
Photoinduced charge-separation and charge-recombination processes of fullerene[60] dyads covalently connected with phenothiazine and its trimer (PTZ n -C 60, n = 1 and 3) with a short amide linkage were investigated. A time-resolved fluorescence study provided evidence of charge separation via the excited singlet state of a C 60 moiety ( (1)C 60*), which displayed high efficiencies in various solvents; Phi (S) CS (quantum yield of charge separation via (1)C 60*) = 0.59 (toluene) to 0.87 (DMF) for PTZ 1-C 60 and 0.78 (toluene) to 0.91 (DMF) for PTZ 3-C 60. The transient absorption measurement with a 6 ns time resolution in the visible and near-IR regions showed evidence of the generation of radical ion pairs in relatively polar solvents for both dyads. In nonpolar toluene, only PTZ 1- (3)C 60* was observed for PTZ 1-C 60, whereas PTZ 3- (3)C 60* as well as the radical ion pair state in equilibrium were observed for PTZ 3-C 60. The radical ion pairs had relatively long lifetimes: 60 (DMF) to 910 ns ( o-dichlorobenzene) for (PTZ) 1 (*+)-C 60 (*-) and 230 (PhCN) to 380 ns ( o-dichlorobenzene) for (PTZ) 3 (*+)-C 60 (*-). The small reorganization energy (lambda) and the electronic coupling element (| V|) were estimated by the temperature dependence of the charge-recombination rates, i.e., lambda = 0.53 eV and | V| = 1.6 cm (-1) for (PTZ) 3 (*+)-C 60 (*-).  相似文献   

17.
The scope of the present work is to highlight the effects stemming from different C60/exTTF linkages (exTTF = 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene)-either via an anthracene unit or a dithiole ring. Particular emphasis is placed on photoinduced electron-transfer features. Therefore, we devised a new series of C60-exTTF ensembles, synthesized via 1,3-dipolar cycloaddition and Diels-Alder cycloaddition reactions, in which exTTF units are separated from C60 by two single bonds (3a-c, 4), one vinylene unit (5a), or two vinylene units (5b). The cyclic voltammetry reveals an amphoteric redox behavior with remarkably strong electron-donor ability of the trimethyl-substituted exTTF moiety in 4 and 5a,b. Steady-state and time-resolved photolytic techniques show that the fullerene singlet excited state in (3a-c, 4, and 5a,b) is subject to a rapid electron-transfer quenching. The resulting charge-separated states, that is C60*(-)-exTTF*+, were identified by transient absorption spectroscopy. We determined radical pair lifetimes of the order of 200 ns in benzonitrile. This suggests (i) that the positive charge of the exTTF*+ is delocalized over the entire donor rather than localized on one of the 1,3-dithiole rings and (ii) that linking exTTF via the anthracene or 1,3-dithiole ring has no appreciable influence. Increasing the donor-acceptor separation via implementing one or two vinylene units as spacers led to improved radical pair lifetimes (5a: tau = 725 ns; 5b: tau = 1465 ns).  相似文献   

18.
本文对晶态C60, K3C60, K6C60, Rb3C60, Rb6C60, RbCs2C60, Rb2CsC60,KRb2C60, K2RbC60, K2CsC60, Na2CsC60, Li2CsC60, Na2RbC60, Na2KC60进行了EHMO三维晶体轨道的能带结构计算。计算结果除了得到能带结构外, 还得到了这类掺杂物的总态密度, 原子与轨道净电荷, 晶体轨道矢量, 单胞内外原子与轨道投影态密度等。利用上述结果不仅可以从理论上说明A3C60的超导性以及C60和A6C60的绝缘性; 而且还得到ln(1/Tc)和-1/NEf之间一种近似的线性关系, 这个结论与BCS理论的预测非常吻合。  相似文献   

19.
Mixed self-assembled monolayers (SAM) of alkyl phosphonic acids and C(60) functionalized octadecyl phosphonic acids (C(60)C(18)-PA) are deposited on alumina substrates from solution and are shown to form well-ordered structures with an insulating layer of alkyl chains and a semiconducting layer that comprises mainly C(60). Such an ordered structure is a necessity for the application of SAMs in organic transistors but is difficult to obtain since C(60)C(18)-PA without additional support do self-assemble in dense packaging but not in a well-ordered fashion. To avoid disordering of the SAM and to gain a better control of the interfacial properties we have investigated the stabilizing effects of fluorinated dodecyl phosphonic acids (FC(12)-PA) on the C(60)C(18)-PA monolayer. Vibrational sum-frequency (SFG) spectroscopy, ellipsometry, X-ray photoelectron spectroscopy, and electrical measurements were applied to study the mixed monolayers. Here, we make use of the differently labeled PA to determine surface coverages and molecular properties of the two species independently. Adsorption of FC(12)-PA gives rise to vibrational bands at 1344 cm(-1) and 1376 cm(-1) in SFG spectra, while a pronounced vibrational band centered at 1465 cm(-1) is attributable to C(60) vibrations. The coexistence of the bands is indicative for the presence of a mixed monolayer that is composed of both molecular species. Furthermore, a pronounced maximum in SFG intensity of the C(60) band is observed for SAMs, which are deposited from solutions with ~75% C(60)C(18)-PA and ~25% FC(12)-PA. The intensity maximum originates from successful stabilization of C(60) modified C(60)C(18)-PA by FC(12)-PA and a significantly improved molecular order. Conclusions from SFG spectra are corroborated by electric measurements that show best performance at these concentrations. Our results provide new information on the morphology and composition of C(60) modified SAMs and establish a route to fabricate well-defined layers for molecular scale organic electronics.  相似文献   

20.
PPO (poly(2,6-dimethyl-1,4-phenylene oxide)) is a well-known membrane material showing good gas separation properties. The incorporation of nanoparticles can enhance or deteriorate the performance of composite membranes, sometimes depending only on the way of the composite preparation. We have modified the PPO polymer with C60 fullerenes up to a content of 2 wt %. Previous investigations showed a strong dependence of permeability on whether the C60 is simply dispersed in the polymer or chemically bonded to the polymer chains. Free volume effects were suggested as an explanation but not experimentally confirmed. Here, we present free volume studies by positron annihilation lifetime spectroscopy. An additional long positron lifetime shows the increased free volume of composite samples, while the high electron affinity of C60 helps to indicate the homogeneity of the samples. Combining the presented results with permeability measurements refines the understanding of this promising membrane material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号