首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed molecular orbital calculations were directed to the cyclopropylcarbinyl radical (1), the cyclopropoxy radical (2), and the cyclopropylaminium radical cation (3) as well as their ring-opened products. Since a considerable amount of data are published about cyclopropylcarbinyl radicals, calculations were made for this species and related ring-opened products as a reference for 2 and 3 and their reactions. Radicals 1-3 have practical utility as "radical clocks" that can be used to time other radical reactions. Radical 3 is of further interest in photoelectron-transfer processes where the back-electron-transfer process may be suppressed by rapid ring opening. Calculations have been carried out at the UHF/6-31G*, MP4//MP2/6-31G*, DFT B3LYP/6-31G*, and CCSD(T)/cc-pVTZ//QCISD/cc-pVDZ levels. Energies are corrected to 298 K, and the barriers between species are reported in terms of Arrhenius E(a) and log A values along with differences in enthalpies, free energies, and entropies. The CCSD(T)-calculated energy barrier for ring opening of 1 is E(a) = 9.70, DeltaG* = 8.49 kcal/mol, which compares favorably to the previously calculated value of E(a) = 9.53 kcal/mol by the G2 method, but is higher than an experimental value of 7.05 kcal/mol. Our CCSD(T)-calculated E(a) value is also higher by 1.8 kcal/mol than a previously reported CBS-RAD//B3LYP/6-31G* calculation. The cyclopropoxy radical has a very small barrier to ring opening (CCSD(T), E(a) = 0.64 kcal/mol) and should be a very sensitive time clock. Of the three series studied, the cyclopropylaminium radical cation is most complex. In agreement with experimental data, bisected cyclopropylaminium radical cation is not found, but instead a ring-opened species is found. A perpendicular cyclopropylaminium radical cation (4) was found as a transition-state structure. Rotation of the 2p orbital in 4 to the bisected array results in ring opening. The minimum onset energy of photoionization of cyclopropylamine was calculated to be 201.5 kcal/mol (CCSD(T)) compared to experimental values of between about 201 and 204 kcal/mol. Calculations were made on the closely related cyclopropylcarbinyl and bicyclobutonium cations. Stabilization of the bisected cyclopropylcarbinyl conformer relative to the perpendicular species is much greater for the cations (29.1 kcal/ mol, QCISD) compared to the radicals (3.10 kcal/mol, QCISD). A search was made for analogues to the bicyclobutonium cation in the radical series 1 and 2 and the radical cation series 3. No comparable species were found. A rationale was made for some conflicting calculations involving the cyclopropylcarbinyl and bicyclobutonium cations. The order of stability of the cyclopropyl-X radicals was calculated to be X = CH2 > X = O > X = NH2+, where the latter species has no barrier for ring opening. The relative rate of ring opening for cyclopropyl-X radicals X = CH2 to X = O was calculated to be 3.1 x 10(6) s(-1) at 298 K (QCISD).  相似文献   

2.
The radical cation formed by mesylate heterolysis from the 1,1-dimethyl-7,7-diphenyl-2-mesyloxy-6-heptenyl radical was studied in several solvents. Computational results suggest that the initially formed acyclic radical cation is a resonance hybrid with partial positive charge in both double bonds of 1,1-diphenyl-7-methyl-1,6-octadiene (10). Thiophenol trapping was used as the competing reaction for kinetic determinations. The acyclic radical cation rapidly equilibrates with a cyclic distonic radical cation, and thiophenol trapping gives acyclic product 10 and cyclic products, mainly trans-1-(diphenylmethyl)-2-(1-methylethenyl)cyclopentane (11). The rate constants for cyclization at ambient temperature were k = (0.5-2) x 10(10)(s-1), and those for ring opening were k = (1.5-9) x 10(10)(s-1). Laser flash photolysis studies in several solvents show relatively slow processes (k = (2.5-260) x 10(5)(s-1) that involve rate-limiting trapping reactions for the equilibrating radical cations. In mixtures of fluoroalcohols RfCH2OH in trifluoromethylbenzene, variable-temperature studies display small, and in one case a negative, activation energies, requiring equilibration reactions prior to the rate-limiting processes. Fast equilibration of acyclic and cyclic radical cations implies that product ratios can be controlled by the populations of the acyclic and cyclic species and relative rate constants for trapping each.  相似文献   

3.
Two series of enol ether radical cations were studied by laser flash photolysis methods. The radical cations were produced by heterolyses of the phosphate groups from the corresponding alpha-methoxy-beta-diethylphosphatoxy or beta-diphenylphosphatoxy radicals that were produced by 355 nm photolysis of N-hydroxypryidine-2-thione (PTOC) ester radical precursors. Syntheses of the radical precursors are described. Cyclizations of enol ether radical cations 1 gave distonic radical cations containing the diphenylalkyl radical, whereas cyclizations of enol ether radical cations 2 gave distonic radical cation products containing a diphenylcyclopropylcarbinyl radical moiety that rapidly ring-opened to a diphenylalkyl radical product. For 5-exo cyclizations, the heterolysis reactions were rate limiting, whereas for 6-exo and 7-exo cyclizations, the heterolyses were fast and the cyclizations were rate limiting. Rate constants were measured in acetonitrile and in acetonitrile solutions containing 2,2,2-trifluoroethanol, and several Arrhenius functions were determined. The heterolysis reactions showed a strong solvent polarity effect, whereas the cyclization reactions that gave distonic radical cation products did not. Recombination reactions or deprotonations of the radical cation within the first-formed ion pair compete with diffusive escape of the ions, and the yields of distonic radical cation products were a function of solvent polarity and increased in more polar solvent mixtures. The 5-exo cyclizations were fast enough to compete efficiently with other reactions within the ion pair (k approximately 2 x 10(9) s(-1) at 20 degrees C). The 6-exo cyclization reactions of the enol ether radical cations are 100 times faster (radical cations 1) and 10 000 times faster (radical cations 2) than cyclizations of the corresponding radicals (k approximately 4 x 10(7) s(-1) at 20 degrees C). Second-order rate constants were determined for reactions of one enol ether radical cation with water and with methanol; the rate constants at ambient temperature are 1.1 x 10(6) and 1.4 x 10(6) M(-1) s(-1), respectively.  相似文献   

4.
A series of substituted benzoyl radicals has been generated by laser flash photolysis of alpha-hydroxy ketones, alpha-amino ketones, and acyl and bis(acyl)phosphine oxides, all of which are used commercially as photoinitiators in free radical polymerizations. The benzoyl radicals have been studied by fast time-resolved infrared spectroscopy. The absolute rate constants for their reaction with n-butylacrylate, thiophenol, bromotrichloromethane and oxygen were measured in acetonitrile solution. The rate constants of benzoyl radical addition to n-butylacrylate range from 1.3 x 10(5) to 5.5 x 10(5) M(-1) s(-1) and are about 2 orders of magnitude lower than for the n-butylacrylate addition to the counterradicals that are produced by alpha-cleavage of the investigated ketones. Density functional theoretical calculations have been performed in order to rationalize the observed reactivities of the initiating radicals. Calculations of the phosphorus-centered radicals generated by photolysis of an acyl and bis(acyl)phosphine oxide suggest that P atom Mulliken spin populations are an indicator of the relative reactivities of the phosphorus-centered radicals. The alpha-cleavage of (2,4,6-trimethylbenzoyl)phosphine oxide was studied by picosecond pump-probe and nanosecond step-scan time-resolved infrared spectroscopy. The results support a mechanism in which the alpha-cleavage occurs from the triplet excited state that has a lifetime less than or equal to the singlet excited state.  相似文献   

5.
[Reaction: see text].A model for glycol radicals was employed in laser flash photolysis kinetic studies of catalysis of the fragmentation of a methoxy group adjacent to an alpha-hydroxy radical center. Photolysis of a phenylselenylmethylcyclopropane precursor gave a cyclopropylcarbinyl radical that rapidly ring opened to the target alpha-hydroxy-beta-methoxy radical (3). Heterolysis of the methoxy group in 3 gave an enolyl radical (4a) or an enol ether radical cation (4b), depending upon pH. Radicals 4 contain a 2,2-diphenylcyclopropane reporter group, and they rapidly opened to give UV-observable diphenylalkyl radicals as the final products. No heterolysis was observed for radical 3 under neutral conditions. In basic aqueous acetonitrile solutions, specific base catalysis of the heterolysis was observed; the pK(a) of radical 3 was determined to be 12.5 from kinetic titration plots, and the ketyl radical formed by deprotonation of 3 eliminated methoxide with a rate constant of 5 x 10(7) s(-1). In the presence of carboxylic acids in acetonitrile solutions, radical 3 eliminated methanol in a general acid-catalyzed reaction, and rate constants for protonation of the methoxy group in 3 by several acids were measured. Radical 3 also reacted by fragmentation of methoxide in Lewis-acid-catalyzed heterolysis reactions; ZnBr2, Sc(OTf)3, and BF3 were found to be efficient catalysts. Catalytic rate constants for the heterolysis reactions were in the range of 3 x 10(4) to 2 x 10(6) s(-1). The Lewis-acid-catalyzed heterolysis reactions are fast enough for kinetic competence in coenzyme B12 dependent enzyme-catalyzed reactions of glycols, and Lewis-acid-catalyzed cleavages of beta-ethers in radicals might be applied in synthetic reactions.  相似文献   

6.
Rate constants for heterolytic fragmentation of beta-(ester)alkyl radicals were determined by a combination of direct laser flash photolysis studies and indirect kinetic studies. The 1,1-dimethyl-2-mesyloxyhexyl radical (4a) fragments in acetonitrile at ambient temperature with a rate constant of k(het) > 5 x 10(9) s(-1) to give the radical cation from 2-methyl-2-heptene (6), which reacts with acetonitrile with a pseudo-first-order rate constant of k = 1 x 10(6) s(-1) and is trapped by methanol in acetonitrile in a reversible reaction. The 1,1-dimethyl-2-(diphenylphosphatoxy)hexyl radical (4b) heterolyzes in acetonitrile to give radical cation 6 in an ion pair with a rate constant of k(het) = 4 x 10(6) s(-1), and the ion pair collapses with a rate constant of k < or = 1 x 10(9) s(-1). Rate constants for heterolysis of the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(diphenylphosphatoxy)ethyl radical (5a) and the 1,1-dimethyl-2-(2,2-diphenylcyclopropyl)-2-(trifluoroacetoxy)ethyl radical (5b) were measured in various solvents, and an Arrhenius function for reaction of 5a in THF was determined (log k = 11.16-5.39/2.3RT in kcal/mol). The cyclopropyl reporter group imparts a 35-fold acceleration in the rate of heterolysis of 5a in comparison to 4b. The combined results were used to generate a predictive scale for heterolysis reactions of alkyl radicals containing beta-mesyloxy, beta-diphenylphosphatoxy, and beta-trifluoroacetoxy groups as a function of solvent polarity as determined on the E(T)(30) solvent polarity scale.  相似文献   

7.
Amaudrut J  Wiest O 《Organic letters》2000,2(9):1251-1254
[formula: see text] The cinnamyloxy and oxiranyl benzyl radicals were generated by photolysis of alkyl 4-nitrobenzenesulfenates. The yet unprecedented epoxide ring formation from a primary alkoxy radical was observed. Experimental evidence supports the fact that the mode of ring opening of the oxiranyl carbinyl radical system is thermodynamically driven. B3LYP/6-31G* calculations indicate that the closed form of the radical is approximately 5 kcal/mol more stable than the open one.  相似文献   

8.
The rate constant for ring opening of the 1-(trans-2-phenylcyclopropyl)ethen-1-yl radical, 4, generated by photolysis of the corresponding vinyl iodide 2, is reported. The value of the rate constant was determined by the tin hydride method and was found to be (1.6+/-0.2)x10(10) s-1, one order of magnitude smaller than the rate constant for rearrangement of the trans-2-phenylcyclopropylcarbinyl radical.  相似文献   

9.
Using direct and indirect electrochemical methods, the rate constant for ring opening of the radical cation generated from N-cyclopropyl-N-methylaniline was found to be 4.1 x 10(4) s(-1).  相似文献   

10.
Reactions of secondary alkyl radicals with triethylborane and several of its complexes were studied. The H-atom transfer reactions from Et3B-OH2 and Et3B-OD2 were suppressed by addition of pyridine to the reaction mixture. Rate constants for reactions of secondary alkyl radicals with triethylborane and its complexes with water, deuterium oxide, methanol, and THF at ambient temperature were determined by radical clock methods. Cyclization of the 1-undecyl-5-hexenyl radical and ring opening of the 1-cyclobutyldodecyl radical were evaluated as clock reactions. The cyclobutylcarbinyl radical ring opening had the appropriate velocity for relatively precise determinations of the ratios of rate constants for H-atom transfer trapping and rearrangement, and these ratios combined with an estimated rate constant for the cyclobutylcarbinyl radical ring opening gave absolute values for the rate constants for the H-atom transfer reactions. For example, the triethylborane-water complex reacts with a secondary alkyl radical in benzene at 20 degrees C with a rate constant of 2 x 10(4) M(-1) s(-1). Variable temperature studies with the Et3B-CH3OH complex in toluene indicate that the hydrogen atom transfer reaction has unusually high entropic demand, which results in substantially more efficient hydrogen atom transfer trapping reactions in competition with radical ring opening and cyclization reactions at reduced temperatures.  相似文献   

11.
Fluorine substituent effects on the structure of oxirane and on the kinetic behavior of oxiranylcarbinyl radicals, as determined by DFT calculations, have been found to be similar to those observed for the analogous fluorinated cyclopropylcarbinyl radical systems. A structural and energetic analysis showed that a stereoelectronic effect involving preferential interaction of the semi-occupied atomic orbital of the radical with the weaker ring bond is the major factor that contributes to the regiochemistry of the ring opening of fluorinated oxiranylcarbinyl radicals. With low and potentially zero activation barriers, 3,3-difluorooxiranylcarbinyl radical and cation undergo ring opening with CO bond cleavage and CC cleavage, respectively.  相似文献   

12.
[reaction: see text] N-Aryl-5,5-diphenyl-4-pentenamidyl radicals (3) were produced by 266 nm laser-flash photolysis of the corresponding N-(phenylthio) derivatives, and the rate constants for the cyclizations of these radicals were measured directly. The 5-exo cyclization reactions were fast (k(c) > 2 x 10(5) s(-1)), and radicals 3 generally behaved as electrophilic reactants with a Hammett correlation of rho = 1.9 for five of the six radicals studied. However, the p-methoxyphenyl-substituted radical 3f cyclized much faster than expected from the Hammett analysis. Variable temperature studies of parent radical 3a (aryl = phenyl) gave an Arrhenius function with log k = 9.2 - 4.4/2.3RT (kcal/mol). The rate constant for the reaction of p-ethylphenyl-substituted anilidyl radical 3b with Bu(3)SnH at 65 degrees C was k(T) = 4 x 10(5) M(-1) s(-1).  相似文献   

13.
alpha-Methyleneglutarate mutase (MGM) catalyzes the rearrangement of 2-methyleneglutarate to 3-methylitaconate (2-methylene-3-methylsuccinate). A putative mechanism for the MGM-catalyzed reaction involves 3-exo cyclization of the 2-methyleneglutaric acid-4-yl radical to a cyclopropylcarbinyl radical intermediate that ring opens to the 3-hydroxycarbonyl-2-methylenebutanoic acid-4-yl radical (3-methylitaconic acid radical). Model reactions for this mechanism were studied by laser flash photolysis kinetic methods. alpha-Ester radicals were produced by 266 nm photolysis of alpha-phenylselenyl ester derivatives. Rate constants for cyclizations of the (Z)-1-ethoxycarbonyl-4-(2,2-diphenylcyclopropyl)-3-buten-1-yl radical ((Z)-8a) and (E)- and (Z)-1,3-di(ethoxycarbonyl)-4-(2,2-diphenylcyclopropyl)-3-buten-1-yl radicals ((E)- and (Z)-8b) were determined. The ester group in (Z)-8a accelerates the 3-exo cyclization in comparison to the parent radical lacking an ester group by a factor of 3, an effect ascribed to a polarized transition state. The ester groups at C3 in radicals 8b slow the 3-exo cyclization reaction by a factor of 50. The rate constant for cyclization of the 2-methyleneglutaric acid-4-yl radical is estimated to be k approximately 2000 s(-1) at ambient temperature. When coupled with the estimated partitioning of the intermediate cyclopropylcarbinyl radical, the overall rate constant for the conversion is estimated to be k approximately equal to 1 x 10(-3) s(-1), which is much too small for any radical reaction and several orders of magnitude too small for kinetic competence for the MGM-catalyzed process. The possibility that the radical reaction in nature involves an unusual mechanism in which polar effects are important is discussed.  相似文献   

14.
1-Bromo-2-methoxy-1-phenylpropan-2-yl (3) and 2-methoxy-1-phenyl-1-diphenylphosphatopropan-2-yl (4) were generated under continual photolysis from the respective PTOC precursors in a mixture of acetonitrile and methanol. The radicals undergo heterolytic fragmentation of the substituent in the beta-position to generate the olefin cation radical (5). Z-2-Methoxy-1-phenylpropene (15) is the major product formed in the presence of 1,4-cyclohexadiene, and is believed to result from hydrogen atom transfer to the oxygen of the olefin cation radical, followed by deprotonation. Laser flash photolysis experiments indicate that reaction between 5 and 1,4-cyclohexadiene occurs with a rate constant of approximately 6 x 10(5) M(-1) s(-1). 2,2-Dimethoxy-1-phenylpropane (18) is observed as a minor product. Laser flash photolysis experiments place an upper limit on methanol trapping of 5 at k <1 x 10(3) M(-1) s(-1) and do not provide any evidence for the formation of reactive intermediates other than 5. The use of two PTOC precursors containing different leaving groups to generate a common olefin cation radical enables one to utilize product analysis to probe for the intermediacy of other reactive intermediates. The ratio of 15:18 is dependent upon hydrogen atom donor concentration, but is independent of the PTOC precursor. These observations are consistent with the proposal that both products result from trapping of 5 that is formed via heterolysis of 3 and 4.  相似文献   

15.
[reaction: see text] The absolute rate constants for beta-scission of a series of benzocycloalken-1-oxyl radicals and of the 2-(4-methylphenyl)-2-butoxyl radical have been measured directly by laser flash photolysis. The benzocycloalken-1-oxyl radicals undergo ring opening with rates which parallel the ring strain of the corresponding cycloalkanes. In the 1-X-indan-1-oxyl radical series, ring opening is observed when X = H, Me, whereas exclusive C-X bond cleavage occurs when X = Et. The factors governing the fragmentation regioselectivity are discussed.  相似文献   

16.
The 2-methyl-1,4-naphthoquinone (MQ) sensitized photooxidation of nucleic acid derivatives has been studied by laser flash photolysis and steady state methods. Thymine and thymidine, as well as other DNA model compounds, quench triplet MQ by electron transfer to give MQ radical anions and pyrimidine or purine radical cations. Although the pyrimidine radical cations cannot be directly observed by flash photolysis, the addition of N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) results in the formation of the TMPD radical cation via scavenging of the pyrimidine radical cation. The photooxidation products for thymine and thymidine are shown to result from subsequent chemical reactions of the radical cations in oxygenated aqueous solution. The quantum yield for substrate loss at limiting substrate concentrations is 0.38 for thymine and 0.66 for thymidine. The chemistry of the radical cations involves hydration by water leading to C(6)-OH adduct radicals of the pyrimidine and deprotonation from the N(1) position in thymine and the C(5) methyl group for thymidine. Superoxide ions produced via quenching of the quinone radical anion with oxygen appear to be involved in the formation of thymine and thymidine hydroperoxides and in the reaction with N(1)-thyminyl radicals to regenerate thymine. The effects of pH were examined in the range pH 5-8 in both the presence and absence of superoxide dismutase. Initial C(6)-OH thymine adducts are suggested to dehydrate to give N(1)-thyminyl radicals.  相似文献   

17.
Nanosecond laser flash photolysis studies of the radical cation of 4-hydroxy-3-methoxystyrene show that the radical cation reacts with neutral 4-hydroxy-3-methoxystyrene and non-phenolic styrenes with rate constants that range from 1 x 10(8) to 5 x 10(8) M(-1) s(-1). Similar 4-vinylphenol radical cations such as the radical cations of isoeugenol and coniferyl alcohol display reduced reactivity, presumably due to the presence of beta-alkyl substituents. Overall, the results show that the reactivity of 4-vinylphenol radical cations with neutral styrenes parallels the reactivity of non-phenolic styrene radical cations, which are known to undergo efficient radical cation mediated dimerization reactions to give lignan-like compounds. The possibility that the biosynthesis of some lignans may follow a radical cation mediated mechanism is discussed.  相似文献   

18.
Polypropylene (PP) and polyethylene (PE) peroxy radicals undergo photoreactions, but under commonly encountered photodegradation conditions these reaction rates are much lower than those of conventional radical reactions; for example, for PP peroxy radicals in noon summer sunlight at 25°C their rate of photolysis to alkyl radicals is less than one-tenth of their rate of hydrogen abstraction from the polymer. At lower temperatures( < ?10°C) or when more intense radiation is used, however, peroxy radical photolysis becomes a proportionately more important source of alkyl radicals. In addition, occurrence of photoinduced radical combination is confirmed but is shown to be important only when photolysis generates an alkyl radical sufficiently close to a peroxy radical that termination can occur before oxygen reconverts the alkyl radical to a peroxy radical. This termination mechanism therefore becomes more important for radicals generated at lower temperatures when the average separation of a radical pair is lower.  相似文献   

19.
We hypothesized that, because the stereoselectivity of anomeric radical reactions was significantly influenced by the anomeric effect, which can be controlled by restricting the conformation of the radical intermediate, the proper conformational restriction of the pyranose ring of the substrates would therefore make highly alpha- and beta-stereoselective anomeric radical reactions possible. Thus, the conformationally restricted 1-phenylseleno-D-xylose derivatives 9 and 10, restricted in a (4)C(1)-conformation, and 11 and 12, restricted in a (1)C(4)-conformation, were designed and synthesized by introducing the proper protecting groups on the hydroxyl groups on the pyranose ring as model substrates for the anomeric radical reactions. The radical deuterations with Bu(3)SnD and the C-glycosylation with Bu(3)SnCH(2)CH [double bond] CH(2) or CH(2) [double bond] CHCN, using the (4)C(1)-restricted substrates 9 and 10, afforded the corresponding alpha-products (alpha/beta = 97:3-85:15) highly stereoselectively, whereas the (1)C(4)-restricted substrates 11 and 12 selectively gave the beta-products (alpha/beta = 1:99-0:100). Thus, stereoselectivity was significantly increased by conformational restriction and was completely inverted by changing the substrate conformation from the (4)C(1)-form into the (1)C(4)-form. Ab initio calculations suggested that the radical intermediates produced from these substrates possessed the typical (4)C(1)- or (1)C(4)-conformation, which was similar to that of the substrates, and that the anomeric effect in these conformations would be the factor controlling the transition state of the reaction. Therefore, the highly alpha- and beta-selective reactions would occur because of the anomeric effect, which could be manipulated by conformational restriction of the substrates, as expected. This would be the first radical C-glycosylation reaction to provide both alpha- and beta-C-glycosides highly stereoselectively.  相似文献   

20.
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号