首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shearing of a simple nonpolar film, right after the liquid-to-solid phase transition under nanometer confinement, is studied by using a liquid-vapor molecular dynamics simulation method. We find that, in contrast with the shear melting and recrystallization behavior of the solidlike phase during the stick-slip motion, interlayer slips within the film and wall slips at the wall-film interface are often observed. The ordered solidified film is well maintained during the slip. Through the time variations of the frictional force and potential energy change within the film, we find that both the friction dissipation during the slip and the potential energy decay after the slip in the solidified film take a fairly large portion of the total energy dissipation.  相似文献   

2.
Phase synchronization of a CO2 laser with feedback, exhibiting homoclinic chaos, is realized by a tiny periodic perturbation of a control parameter. The deviations of the modulation frequency from the optimal one induce phase slips, thus yielding an imperfect phase synchronization. Based on the information of these phase slips, the modulation frequency can be readjusted until the phase slips are eliminated. In this way, a control loop which detects the phase slips provides an adaptive tracking of the natural frequency of the dynamical system. Moreover, we have shown that the system's susceptibility is largest when a periodic impulsive perturbation is applied near the saddle focus.  相似文献   

3.
Quantum phase slips are traditionally considered in diffusive superconducting wires which are assumed homogeneous. We present a definite estimate for the amplitude of phase slips that occur at a weak inhomogeneity in the wire where local resistivity is slightly increased. We model such a weak link as a general coherent conductor and show that the amplitude is dominated by the topological part of the action. We argue that such weak links occur naturally in apparently homogeneous wires and adjust the estimate to that case. The fabrication of an artificial weak link would localize phase slips and facilitate a better control of the phase-slip amplitude.  相似文献   

4.
We investigate the transition route to phase synchronization in a chaotic laser with external modulation. Such a transition is characterized by the presence of a regime of periodic phase synchronization, in which phase slips occur with maximal coherence in the phase difference between output signal and external modulation. We provide the first experimental evidence of such a regime and demonstrate that it occurs at the crossover point between two different scaling laws of the intermittent-type behavior of phase slips.  相似文献   

5.
Cu has been used extensively to replace Al as interconnects in ULSI and MEMS devices. However, because of the difference in the thermal expansion coefficients between the Cu film and the Si substrate, large biaxial stresses will be generated in the Cu film. Thus, the Cu film becomes unstable and even changes its morphologies which affects the device manufacturing yield and ultimate reliability. The structural stability and theoretical strength of Cu crystal under equal biaxial loading have been investigated by combining the MAEAM with Milstein-modified Born stability criteria. The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain respectively.  相似文献   

6.
Quantum phase slips have received much attention due to their relevance to superfluids in reduced dimensions and to models of cosmic string production in the early universe. Their establishment in one-dimensional superconductors has remained controversial. Here we study the nonlinear current-voltage characteristics and linear resistance in long superconducting Al wires with lateral dimensions approximately 5 nm. We find that, in a magnetic field and at temperatures well below the superconducting transition, the observed behaviors can be described by the nonclassical, macroscopic quantum tunneling of phase slips, and are inconsistent with the thermal activation of phase slips.  相似文献   

7.
Dragonflies are four-winged insects that have the ability to control aerodynamic performance by modulating the phase lag (phi) between forewings and hindwings. We film the wing motion of a tethered dragonfly and compute the aerodynamic force and power as a function of the phase. We find that the out-of-phase motion as seen in steady hovering uses nearly minimal power to generate the required force to balance the weight, and the in-phase motion seen in takeoffs provides an additional force to accelerate. We explain the main hydrodynamic interaction that causes this phase dependence.  相似文献   

8.
We determine the effects of film thickness, epitaxial strain and the nature of electrodes on ferroelectric phase transitions in ultrathin films of BaTiO3 using a first-principles effective Hamiltonian in classical molecular dynamics simulations. We present results for polarization and dielectric properties as a function of temperature and epitaxial strain, leading to size-dependent temperature-strain phase diagram for the films sandwiched between ‘perfect’ electrodes. In the presence of non-vanishing depolarization fields when non-ideal electrodes are used, we show that a stable stripe-domain phase is obtained at low temperatures. The electrostatic images in the presence of electrodes and their interaction with local dipoles in the film explain these observed phenomena.   相似文献   

9.
The phase diagram and the single-domain uniform state for a uniaxial ferromagnetic film with the superconducting layers covering one or both sides of a ferromagnet are investigated. The superconductor is supposed to be a second-order one and the interaction between the magnetic sub-system and with the conductivity electrons in a superconductor is purely electromagnetic and the vortices in a superconductor are pinned. The critical thickness of the magnetic film for which the uniform state becomes absolutely stable is calculated when the external magnetic field is supposed to be in-plane of the film. It is shown that the critical thickness of the film from the magnetic material with the quality factor Q>1 monotonically decreases as the magnetic field increases in the range from zero value to the value of the transition field where the collinear phase transforms into the angular (canted) phase. Further the critical thickness increases with the increase of the field. The quasi-single-domain magnetic film states were considered when the film thickness was close to the critical one. It is shown that for a thin isolated magnetic film the domain period exponentially increases with the decrease of the film thickness. Such dependence, however for the film with double-side superconducting cover and close to the transition into the single domain state becomes logarithmic and for the film covered by superconductor only on the one side varies as the power series. The single-domain state existence and the asymptotic behaviour of the domain structure is explained by the features of the asymptotic behaviour of the domain walls within the system. As for isolated magnetic film and for a film with the superconductor cover layers the transition from the collinear phase to the inhomogeneous state is the second-order phase transition and the transition from the uniform angular phase to the inhomogeneous phase is the first-order transition.  相似文献   

10.
The effective surface resistance of nearly ferroelectric superconducting film in the dielectriclike response is theoretically investigated based on the electrodynamics of the nearly ferroelectric superconductors. We calculate the intrinsic film surface resistance for isolated thin film and the effective surface resistance for a superconductor/dielectric layered structure. It is found that the thickness-dependent surface resistance has two different behaviors separated by a critical film thickness being equal to the London penetration length. That is, a nonresonant dependence is seen when the film thickness is less than the London penetration length, and an anomalously resonant behavior is found when the film thickness is larger than the London penetration length. The nonresonant dependence is similar to that of a cuprate superconductor and it further is characterized by some other critical thicknesses. As for the anomalous resonant region it is seen only in a nearly ferroelectric superconductor.  相似文献   

11.
We carry out quantum Monte Carlo simulations for the finite temperature behavior of a chain of coupled superconducting grains, whose T = 0 characteristics have been presented by Matveev et al. [K.A. Matveev, A.I. Larkin, L.I. Glazman, Phys. Rev. Lett. 89 (2002) 096802]. Quantum phase slips at low temperatures and the crossover to thermal hopping at elevated temperatures are observed. The effect of phase slips on persistent currents is numerically demonstrated.  相似文献   

12.
Temperature dependences of the dielectric properties of ultrathin polyvinylidene fluoride films prepared using the Langmuir-Blodgett method were studied by linear and nonlinear dielectric spectroscopy. It is shown that ultrathin Langmuir films of polyvinylidene fluoride exhibit a manifestation of a first-order ferroelectric phase transition, which can be assigned to the interaction between the spontaneous polarization and the surfaces bounding the film. As the film thickness increases, the effect of the surfaces decreases and the ferroelectric phase transition shifts to high temperatures to vanish altogether when the temperature region of the transition rises above the melting point.  相似文献   

13.
We report measurements on ultrathin,doubly connected superconducting cylinders of Al that exhibit a destructive regime,which refers to the loss of superconductivity in a doubly connected superconductor near applied half flux quanta due to the sample topology and the small size of the sample.A depairing quantum phase transition(QPT)between a superconducting and metallic state tuned by the magnetic flux enclosed in the quasi one-dimensional(1D)cylinder was found at the onset of the destructive regime.Results on magnetic flux and temperature dependent sample resistance as well as current-voltage characteristics revealed the presence of both thermally activated and quantum phase slips near the depairing QPT.On the superconducting side of the QPT,thermally activated phase slips as described by the Langer-Ambegaokar and McCumber-Halperin(LAMH)theory were found to describe the sample resistance as the system was pushed towards the QPT by a magnetic field applied along the cylinder axis.However,deviation from this behavior was found at low temperatures,signaling the presence of the quantum phase slips.Most importantly,we observed a highly unusual negative slope in the resistance versus temperature curves on the metallic side of the QPT as predicted by the diagrammatic calculation of the dc conductivities in a 1D system near a depairing QPT.Our work suggests that fluctuations from both the phase and the amplitude of the superconducting order parameter are important for the superconductor-to-metal depairing QPT.  相似文献   

14.
We propose a transistorlike circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a sufficiently high external electromagnetic impedance. Assuming a virtual regime of quantum phase slips (QPS) in two narrow segments of the wire, leading to quantum interference of voltages on these segments, this circuit is dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUIDs) and periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUIDs). The model of this QPS transistor is discussed.  相似文献   

15.
This paper investigates a kind of bireflectance thin film on the window plate of a 633 nm He–Ne laser. The film is coated on the substrate with the application of external load on it. The load on the substrate is removed after the coating has been accomplished, then the strain on the substrate will be transferred to the multilayer coatings. Due to photoelastic effect, the multilayer film becomes an anisotropic film. Selecting appropriate film structure and suitable center wavelength, a high phase dispersion with nearly constant reflectivity around the working wavelength will be obtained. For normal incidence, a sufficient phase shift difference between the two orthogonal polarization states of the reflected wave will be produced. As a result, a dual-frequency laser with a beat frequency of 5 MHz can be carried out by using this kind of multilayer film. The theory of designing such a film is emphasized and an example of bireflectance thin film is proposed.  相似文献   

16.
We investigate the situation where a mesoscopic 1D ring or 2D cylinder is subject to a magnetic field by simulating the time dependant Ginzburg–Landau equations with periodic boundary conditions. We investigate the different possible evolutions for the 1D phase slip phenomenon. The case of the multiple phase slips is analyzed in details and we study the competition between simultaneous and consecutive multiple phase slips analytically and numerically. In 2D we study the creation of vortex–antivortex pairs. Following the theory of the Kibble–Zurek mechanism, we quenched the sample by applying a strong current and observe vortex–antivortex pairs dynamics.  相似文献   

17.
We present a theory for a finite-length superconducting nanowire coupled to an environment. We show that in the absence of dissipation quantum phase slips always destroy superconductivity, even at zero temperature. Dissipation stabilizes the superconducting phase. We apply this theory to explain the "antiproximity effect" recently seen by Tian et al. in zinc nanowires.  相似文献   

18.
液滴碰撞液膜润湿壁面空气夹带数值分析   总被引:1,自引:0,他引:1       下载免费PDF全文
李大树  仇性启  郑志伟 《物理学报》2015,64(22):224704-224704
采用复合水平集-流体体积法并综合考虑传热及接触热阻的作用, 对液滴碰撞液膜润湿壁面空气夹带现象进行了数值分析. 揭示了夹带空气形成机理, 探索了夹带空气特性参数随碰撞速度和液膜厚度的变化规律, 获得了夹带空气作用下液滴碰撞润湿壁面的传热机理. 研究结果表明: 撞壁前气液两相压力差是引起气液相界面拓扑结构变化以及夹带空气形成的主要原因; 液滴碰撞速度与压缩空气层内压力以及相界面形变高度密切相关; 液滴接触液膜时, 碰撞轴上液滴底部和液膜表面速度相等, 大约是碰撞速度的1/2; 碰撞速度对夹带空气层底部到破碎点的无量纲弧长和最大无量纲夹带空气直径均存在较大的影响; 液滴和液膜的无量纲形变高度与斯托克斯数密切相关; 液膜初始厚度对液滴和液膜的无量纲形变高度和最大无量纲夹带空气直径影响较大; 撞壁初始阶段, 碰撞中心区域夹带空气对壁面热流密度分布存在较大的影响.  相似文献   

19.
Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition(MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH_3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film.These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately,leading to the different variation behaviors of resistivity for HT- and LT-grown ones.  相似文献   

20.
《Current Applied Physics》2014,14(5):757-760
CaTiO3 is a well-known incipient ferroelectric material that does not undergo a ferroelectric phase transition in spite of the intriguing dielectric constant behavior. Especially, unlike a prototypical incipient ferroelectric SrTiO3, the paraelectric state of CaTiO3 cannot be easily destroyed by small perturbations, including cation doping and epitaxial strain. We present that a nearly strain-free epitaxial CaTiO3 film grown at a low oxygen partial pressure exhibits polarization–voltage hysteresis loops and the distinct difference of piezoresponse force microscopy phase signals, implying that a ferroelectric phase is induced. Such results are shown even at room temperature. We suggest that the observed ferroelectric behavior in CaTiO3 film comes from the defect dipoles composed of vacancies inside the film. Using electron-probe microanalysis and optical absorption spectra measurements, we found that CaTiO3 film has considerable Ca and O vacancies, forming the localized defect state in electronic structure. This work highlights the importance of vacancies and their clusters, such as defect dipoles, in understanding the electronic properties of perovskite oxide thin films, including ferroelectricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号